Hurler disease or mucopolysaccharidosis type I (MPS-I) is an autosomal-recessive lysosomal storage disease caused by a defect in α-L-iduronidase (IDUA).1,2 It is the most common of the mucopolysaccharidoses, with an incidence of 1 per 75 000 live births.3 Deficiency of the IDUA enzyme leads to a pathological accumulation of glycosaminoglycans (GAG) in the brain and other organs. Typical central nervous system (CNS) features are severe mental retardation, leptomeningeal fibrosis with obstructive hydrocephalus, arachnoid cysts, and sensorineural deafness. Although systemic features of MPS-I can be treated with enzyme replacement therapy or hematopoietic stem cell transplantation, there is currently no accepted treatment for the CNS features. A caveat is that intervention in the neonatal period with bone marrow or cord blood transplantation has shown limited improvement in cognitive performance, likely through cross-correction by stem cells that migrate to the perivascular space.4,5 However, even in the best-case scenario, the existing treatment options do not reverse abnormal cognitive development, are associated with numerous long-term complications, and are prohibitively expensive for many patients. The pathological hallmark of MPS-I in the brain is the accumulation of GAG inside neurons, where they are increased up to 5-fold, as well as in mesodermally derived tissues of the perivascular space, leptomeninges, and choroid plexus, where they are often increased 10-fold and form so-called clear-cell periadventitial inclusions.6 As a result of pathological accumulation of GAG, there is a secondary perturbation of β-galactosidase (originally thought to be the main defect in Hurler disease),7 and consequently, the neuronal inclusions in Hurler disease are made up primarily of gangliosides (GM2, GM3) which are not usually present in substantial amounts in normal brain.8,9 Another downstream enzyme, β-hexosaminidase (defective in Tay-Sachs disease), which breaks down GM2, is upregulated in MPS-I, and normalization of this enzyme was used as a secondary outcome measure in canine gene therapy studies for Hurler disease.10 Our inability to achieve high-level neuronal gene expression throughout the large volume of the human brain is currently an impediment to more effective gene therapy for many neurodegenerative diseases. The purpose of this study was to test the feasibility of minimally invasive viral vector-based CNS gene therapy in Hurler disease and, more specifically, to compare endovascular with intracerebral ventricular (ICV) delivery. Recombinant adeno-associated viral vector (rAAV) was chosen because it is nonpathogenic and is able to express genes in the CNS at very high levels.11 It exists in more than 10 serotypes, most of which specifically transduce neurons when injected intraparenchymally, but some are capable of transducing astrocytes, microglia, ependyma, and other cells to various degrees. To maximize the unit dose per animal, we used a transgenic mouse model12 rather than one of the larger animal models,13,14 with an aggressive endovascular dosing regimen of 1 trillion genomic particles (g.p.) per mouse. We chose rAAV5 vector, which has an advantage of high-level neuronal expression and cellular internalization by the platelet-derived growth factor receptor,15 which also targets ependymal, choroid plexus, and perivascular cells affected in Hurler disease. Another theoretical benefit of rAAV5 is that neutralizing antibody titers are the lowest among AAV serotypes.16 Endovascular gene therapy offers widespread access to the brain but generally requires blood-brain barrier disruption, and until recently, results in animal models were disappointing. Rapoport and colleagues17,18 were the first to show reversible osmotic opening of the blood-brain barrier, and their technique of hyperosmolar disruption remains in widespread use. This method was adapted for clinical use in intra-arterial (IA) chemotherapy for brain tumors19 but has never been used clinically for gene therapy. Endovascular techniques have been used in rats20–22 or mice23 to deliver viral vectors to the brain, but gene expression was significantly less than with intraparenchymal delivery, and the microsurgical techniques are demanding. As a result, this approach was abandoned by the majority of gene therapists, even as microcatheter techniques and vector technology advanced. ICV gene therapy is appealing because the ependymal and meningeal surface area is large and may be particularly suited to Hurler disease, which involves these structures. The original clinical application of ICV gene therapy in 1996 used a nonviral vector with Ommaya reservoirs in patients with Canavan disease together with intravenous mannitol.24 The benefit of mannitol for this route of delivery is the greater bulk flow through the interstitial space and increased permeability of the ependyma, rather than effects on the blood-brain barrier. Systemic mannitol was shown in animal models to increase spread of vectors with ICV or intraparenchymal delivery.24–26 However, as a result of perceived limitations of the ICV route with viral vectors, an intraparenchymal approach with multiple rAAV2 injections and systemic mannitol was subsequently adopted for human use.27,28 At this time, the ICV approach deserves a closer look with new vector technology and techniques to optimize transependymal flow. Our study used rAAV5 vectors in adult animals to deliver foreign genes to the brain via IA or ICV delivery, with mannitol treatment used in both cases. In the first case, mannitol is administered directly to arterial vessels to transiently disrupt the endothelial tight junctions and to allow penetration of vector, whereas in the latter case, mannitol is used to improve bulk flow of rAAV5 through ependyma and interstitial space. We initially tested dose-response and biodistribution using rAAV5–green fluorescent protein (GFP) and then assessed the tolerability and efficacy of a very high unit dose (5 × 1013 viral particles per kg) of the therapeutic vector rAAV5-IDUA. With IA delivery, blood-brain barrier disruption was performed with 25% or 29.1% mannitol, and with ICV delivery, we used 25% mannitol injected systemically or directly into the cerebral ventricle. Our goal with ICV delivery was not merely to assess the use of mannitol, because this is already known to increase vector spread,24,29 but rather to compare the endovascular and ICV delivery routes using the best available techniques. Using either delivery paradigm, we significantly reversed brain pathology in animals with a Hurler phenotype.