1. ASN1-encoded asparagine synthetase in floral organs contributes to nitrogen filling in Arabidopsis seeds
- Author
-
Olivier Grandjean, Toshiharu Hase, Yukiko Sakakibara, Maryam Shakiebaei, Amina Najihi, Xiaole Xu, Marion Trassaert, Akira Suzuki, Tadakatsu Yoneyama, Fabien Chardon, Anne Marmagne, Laure Gaufichon, Gilles Clément, Katia Belcram, Fabienne Soulay, Céline Masclaux-Daubresse, Stéphanie Boutet-Mercey, Sylvie Citerne, Institut Jean-Pierre Bourgin (IJPB), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, ERL 3559 - Du gène à la graine, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA), AgroParisTech, LabEx Sciences des Plantes de Saclay, LabEx Sciences des Plantes de Saclay- Observatoire du Végétal - Chimie Métabolisme, Institute for Protein Research, Division of Protein Chemistry, Laboratory of Regulation of Biological Reactions, Osaka University, LabEx Sciences des Plantes de Saclay - Observatoire du Végétal - Cytologie Imagerie, and LabEx Sciences des Plantes de Saclay - Observatoire du Végétal - Chimie Métabolisme
- Subjects
0106 biological sciences ,0301 basic medicine ,aspartate-ammonia ligase ,ASN1 (At3 g47340) ,Nitrogen ,reproductive organs ,[SDV]Life Sciences [q-bio] ,Asparagine synthetase ,Arabidopsis ,appareil reproducteur ,Plant Science ,seeds ,métabolisme de l'azote ,01 natural sciences ,nitrogen metabolism ,phloem ,Serine ,03 medical and health sciences ,Gene Expression Regulation, Plant ,Genetics ,phloème ,Asparagine ,2. Zero hunger ,chemistry.chemical_classification ,amino acids ,biology ,Arabidopsis Proteins ,arabidopsis thaliana ,phloem transport ,Cell Biology ,biology.organism_classification ,Plants, Genetically Modified ,Amino acid ,Citric acid cycle ,Metabolic pathway ,acide aminé ,030104 developmental biology ,chemistry ,Biochemistry ,asparagine synthétase ,Suspensor ,amino acid ,010606 plant biology & botany - Abstract
Despite a general view that asparagine synthetase generates asparagine as an amino acid for long-distance transport of nitrogen to sink organs, its role in nitrogen metabolic pathways in floral organs during seed nitrogen filling has remained undefined. We demonstrate that the onset of pollination in Arabidopsis induces selected genes for asparagine metabolism, namely ASN1 (At3g47340), GLN2 (At5g35630), GLU1 (At5g04140), AapAT2 (At5g19950), ASPGA1 (At5g08100) and ASPGB1 (At3g16150), particularly at the ovule stage (stage 0), accompanied by enhanced asparagine synthetase protein, asparagine and total amino acids. Immunolocalization confined asparagine synthetase to the vascular cells of the silique cell wall and septum, but also to the outer and inner seed integuments, demonstrating the post-phloem transport of asparagine in these cells to developing embryos. In the asn1 mutant, aberrant embryo cell divisions in upper suspensor cell layers from globular to heart stages assign a role for nitrogen in differentiating embryos within the ovary. Induction of asparagine metabolic genes by light/dark and nitrate supports fine shifts of nitrogen metabolic pathways. In transgenic Arabidopsis expressing promoter CaMV35S::ASN1 fusion, marked metabolomics changes at stage 0, including a several-fold increase in free asparagine, are correlated to enhanced seed nitrogen. However, specific promoter Napin2S::ASN1 expression during seed formation and a six-fold increase in asparagine toward the desiccation stage result in wild-type seed nitrogen, underlining that delayed accumulation of asparagine impairs the timing of its use by releasing amide and amino nitrogen. Transcript and metabolite profiles in floral organs match the carbon and nitrogen partitioning to generate energy via the tricarboxylic acid cycle, GABA shunt and phosphorylated serine synthetic pathway.
- Published
- 2017