Back to Search Start Over

ASN1-encoded asparagine synthetase in floral organs contributes to nitrogen filling in Arabidopsis seeds

Authors :
Olivier Grandjean
Toshiharu Hase
Yukiko Sakakibara
Maryam Shakiebaei
Amina Najihi
Xiaole Xu
Marion Trassaert
Akira Suzuki
Tadakatsu Yoneyama
Fabien Chardon
Anne Marmagne
Laure Gaufichon
Gilles Clément
Katia Belcram
Fabienne Soulay
Céline Masclaux-Daubresse
Stéphanie Boutet-Mercey
Sylvie Citerne
Institut Jean-Pierre Bourgin (IJPB)
Institut National de la Recherche Agronomique (INRA)-AgroParisTech
ERL 3559 - Du gène à la graine
Centre National de la Recherche Scientifique (CNRS)
Institut National de la Recherche Agronomique (INRA)
AgroParisTech
LabEx Sciences des Plantes de Saclay
LabEx Sciences des Plantes de Saclay- Observatoire du Végétal - Chimie Métabolisme
Institute for Protein Research, Division of Protein Chemistry, Laboratory of Regulation of Biological Reactions
Osaka University
LabEx Sciences des Plantes de Saclay - Observatoire du Végétal - Cytologie Imagerie
LabEx Sciences des Plantes de Saclay - Observatoire du Végétal - Chimie Métabolisme
Source :
Plant Journal, Plant Journal, Wiley, 2017, 91, pp.371-393. ⟨10.1111/tpj.13567⟩
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

Despite a general view that asparagine synthetase generates asparagine as an amino acid for long-distance transport of nitrogen to sink organs, its role in nitrogen metabolic pathways in floral organs during seed nitrogen filling has remained undefined. We demonstrate that the onset of pollination in Arabidopsis induces selected genes for asparagine metabolism, namely ASN1 (At3g47340), GLN2 (At5g35630), GLU1 (At5g04140), AapAT2 (At5g19950), ASPGA1 (At5g08100) and ASPGB1 (At3g16150), particularly at the ovule stage (stage 0), accompanied by enhanced asparagine synthetase protein, asparagine and total amino acids. Immunolocalization confined asparagine synthetase to the vascular cells of the silique cell wall and septum, but also to the outer and inner seed integuments, demonstrating the post-phloem transport of asparagine in these cells to developing embryos. In the asn1 mutant, aberrant embryo cell divisions in upper suspensor cell layers from globular to heart stages assign a role for nitrogen in differentiating embryos within the ovary. Induction of asparagine metabolic genes by light/dark and nitrate supports fine shifts of nitrogen metabolic pathways. In transgenic Arabidopsis expressing promoter CaMV35S::ASN1 fusion, marked metabolomics changes at stage 0, including a several-fold increase in free asparagine, are correlated to enhanced seed nitrogen. However, specific promoter Napin2S::ASN1 expression during seed formation and a six-fold increase in asparagine toward the desiccation stage result in wild-type seed nitrogen, underlining that delayed accumulation of asparagine impairs the timing of its use by releasing amide and amino nitrogen. Transcript and metabolite profiles in floral organs match the carbon and nitrogen partitioning to generate energy via the tricarboxylic acid cycle, GABA shunt and phosphorylated serine synthetic pathway.

Details

Language :
English
ISSN :
09607412 and 1365313X
Database :
OpenAIRE
Journal :
Plant Journal, Plant Journal, Wiley, 2017, 91, pp.371-393. ⟨10.1111/tpj.13567⟩
Accession number :
edsair.doi.dedup.....62c4eaf452c14f00336816cce87df81d