1. Generalized Perron Roots and Solvability of the Absolute Value Equation
- Author
-
Radons, Manuel, Tonelli-Cueto, Josué, Technical University of Berlin / Technische Universität Berlin (TU), OUtils de Résolution Algébriques pour la Géométrie et ses ApplicatioNs (OURAGAN), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), J.T.-C. was supported by a postdoctoral fellowship of the 2020 'Interaction' program of the Fondation Sciences Mathématiques de Paris, and was partially supported by ANR JCJC GALOP (ANR-17-CE40-0009), the PGMO grant ALMA, and the PHC GRAPE., ANR-17-CE40-0009,GALOP,Jeux à travers la lentille de algèbre et géométrie de l'optimisation(2017), and L.F. Tabera Alonso
- Subjects
Optimization and Control (math.OC) ,FOS: Mathematics ,Mathematics - Numerical Analysis ,Numerical Analysis (math.NA) ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,Mathematics - Optimization and Control ,65K99, 90C33, 15A24 ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
Let $A$ be a $n\times n$ real matrix. The piecewise linear equation system $z-A\vert z\vert =b$ is called an absolute value equation (AVE). It is well-known to be equivalent to the linear complementarity problem. Unique solvability of the AVE is known to be characterized in terms of a generalized Perron root called the sign-real spectral radius of $A$. For mere, possibly non-unique, solvability no such characterization exists. We narrow this gap in the theory. That is, we define the concept of the aligned spectrum of $A$ and prove, under some mild genericity assumptions on $A$, that the mapping degree of the piecewise linear function $F_A:\mathbb{R}^n\to\mathbb{R}^n\,, z\mapsto z-A\lvert z\rvert$ is congruent to $(k+1)\mod 2$, where $k$ is the number of aligned values of $A$ which are larger than $1$. We also derive an exact--but more technical--formula for the degree of $F_A$ in terms of the aligned spectrum. Finally, we derive the analogous quantities and results for the LCP., Comment: 20 pages, 2 figures
- Published
- 2022
- Full Text
- View/download PDF