Back to Search Start Over

Generalized Perron Roots and Solvability of the Absolute Value Equation

Authors :
Radons, Manuel
Tonelli-Cueto, Josué
Technical University of Berlin / Technische Universität Berlin (TU)
OUtils de Résolution Algébriques pour la Géométrie et ses ApplicatioNs (OURAGAN)
Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586))
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
J.T.-C. was supported by a postdoctoral fellowship of the 2020 'Interaction' program of the Fondation Sciences Mathématiques de Paris, and was partially supported by ANR JCJC GALOP (ANR-17-CE40-0009), the PGMO grant ALMA, and the PHC GRAPE.
ANR-17-CE40-0009,GALOP,Jeux à travers la lentille de algèbre et géométrie de l'optimisation(2017)
L.F. Tabera Alonso
Source :
Discrete Mathematics Days 2022, Discrete Mathematics Days 2022, Jul 2022, Santander, Spain. pp.237-242, ⟨10.22429/Euc2022.016⟩
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

Let $A$ be a $n\times n$ real matrix. The piecewise linear equation system $z-A\vert z\vert =b$ is called an absolute value equation (AVE). It is well-known to be equivalent to the linear complementarity problem. Unique solvability of the AVE is known to be characterized in terms of a generalized Perron root called the sign-real spectral radius of $A$. For mere, possibly non-unique, solvability no such characterization exists. We narrow this gap in the theory. That is, we define the concept of the aligned spectrum of $A$ and prove, under some mild genericity assumptions on $A$, that the mapping degree of the piecewise linear function $F_A:\mathbb{R}^n\to\mathbb{R}^n\,, z\mapsto z-A\lvert z\rvert$ is congruent to $(k+1)\mod 2$, where $k$ is the number of aligned values of $A$ which are larger than $1$. We also derive an exact--but more technical--formula for the degree of $F_A$ in terms of the aligned spectrum. Finally, we derive the analogous quantities and results for the LCP.<br />Comment: 20 pages, 2 figures

Details

Language :
English
Database :
OpenAIRE
Journal :
Discrete Mathematics Days 2022, Discrete Mathematics Days 2022, Jul 2022, Santander, Spain. pp.237-242, ⟨10.22429/Euc2022.016⟩
Accession number :
edsair.doi.dedup.....3667de76af8cef4afd4ad0c5f3f42b19
Full Text :
https://doi.org/10.22429/Euc2022.016⟩