65 results on '"Löffler JF"'
Search Results
2. Electron-band theory inspired design of magnesium-precious metal bulk metallic glasses with high thermal stability and extended ductility
- Author
-
Laws, KJ, Shamlaye, KF, Granata, D, Koloadin, LS, Löffler, JF, Laws, KJ, Shamlaye, KF, Granata, D, Koloadin, LS, and Löffler, JF
- Abstract
Magnesium-based bulk metallic glasses (BMGs) exhibit high specific strengths and excellent glass-forming ability compared to other metallic systems, making them suitable candidates for next-generation materials. However, current Mg-based BMGs tend to exhibit low thermal stability and are prone to structural relaxation and brittle failure. This study presents a range of new magnesium-precious metal-based BMGs from the ternary Mg-Ag-Ca, Mg-Ag-Yb, Mg-Pd-Ca and Mg-Pd-Yb alloy systems with Mg content greater than 67 at.%. These alloys were designed for high ductility by utilising atomic bond-band theory and a topological efficient atomic packing model. BMGs from the Mg-Pd-Ca alloy system exhibit high glass-forming ability with critical casting sizes of up to 3 mm in diameter, the highest glass transition temperatures (>200 °C) of any reported Mg-based BMG to date, and sustained compressive ductility. Alloys from the Mg-Pd-Yb family exhibit critical casting sizes of up to 4 mm in diameter, and the highest compressive plastic (1.59%) and total (3.78%) strain to failure of any so far reported Mg-based glass. The methods and theoretical approaches presented here demonstrate a significant step forward in the ongoing development of this extraordinary class of materials.
- Published
- 2017
3. Dynamic properties of major shear bands in Zr-Cu-Al bulk metallic glasses
- Author
-
Thurnheer, P, Maaß, R, Laws, KJ, Pogatscher, S, Löffler, JF, Thurnheer, P, Maaß, R, Laws, KJ, Pogatscher, S, and Löffler, JF
- Abstract
We present a systematic investigation of shear-band dynamics as a function of chemical composition in the ZrxCu90-xAl10 (x = 45-65) metallic glass system. We investigate aging dynamics in the non-serrated flow regime, shear-band velocities in the serrated flow regime, the transition between these two flow modes, and the transition from ductile to brittle behavior. We find that the activation energy for shear-band propagation is largely determined by the underlying time scales of the shear process, and that temperature-dependent stress drops only play a minor role. The activation energy as a function of composition can be linked to the bonding strength between the fastest diffusor, Cu, and its coordinating atoms, represented by the ratio of strong Cu-Zr to weaker Cu-Cu bonds. This indicates that the resistance to accelerated shear, i.e. the apparent activation barrier, is primarily controlled by a chemical nearest-neighbor effect.
- Published
- 2015
4. Long-term in vivo degradation behaviour of Mg alloys WZ21 and ZX50 - A micro CT study
- Author
-
Martinelli, E, Eichler, J, Amerstorfer, F, Kraus, T, Fischerauer, SF, Uggowitzer, PJ, Löffler, JF, Weinberg, AM, Martinelli, E, Eichler, J, Amerstorfer, F, Kraus, T, Fischerauer, SF, Uggowitzer, PJ, Löffler, JF, and Weinberg, AM
- Published
- 2015
5. In vivo performance of lean bioabsorbable Mg-Ca alloy X0 and comparison to WE43: Influence of surface modification and alloying content.
- Author
-
Berger L, Dolert S, Akhmetshina T, Burkhard JP, Tegelkamp M, Rich AM, Rubin W, Darwiche S, Kuhn G, Schäublin RE, von Rechenberg B, Schaller B, Nuss KM, and Löffler JF
- Abstract
Magnesium alloys present a compelling prospect for absorbable implant materials in orthopedic and trauma surgery. This study evaluates an ultra-high purity, lean magnesium-calcium alloy (X0), both with and without plasma electrolytic oxidation (PEO) surface modification, in comparison to a clinically utilized WE43 magnesium alloy. It is shown that the mechanical properties of X0 can be tuned to yield a high-strength material suitable for bone screws (with an ultimate tensile strength of 336 MPa) or a ductile material appropriate for intraoperatively deformable plates (with an elongation at fracture of 24 %). Four plate-screw combinations were implanted onto the pelvic bones of six sheep without osteotomy for 8 weeks. Subsequent analysis utilized histology, micro-computed tomography, and light and electron microscopy. All implants exhibited signs of degradation and hydrogen-gas evolution, with PEO-coated X0 implants demonstrating the least volume loss and the most substantial new-bone formation on the implant surface and surrounding cancellous bone. Furthermore, the osteoconductive properties of the X0 implants, when uncoated, exceeded those of the uncoated WE43 implants, as evidenced by greater new-bone formation on the surface. This osteoconductivity was amplified with PEO surface modification, which mitigated gas evolution and enhanced osseointegration, encouraging bone apposition in the cancellous bone vicinity. These findings thus indicate that PEO-coated X0 implants hold substantial promise as a biocompatible and absorbable implant material., Competing Interests: LB and JFL are shareholders of Kairos Medical AG, an ETH Zurich spin-off working on absorbable magnesium-based implants. LB is currently employed by the company. This study and analysis was performed before its foundation., (© 2024 The Authors.)
- Published
- 2024
- Full Text
- View/download PDF
6. Development of an implantable sensor system for in vivo strain, temperature, and pH monitoring: comparative evaluation of titanium and resorbable magnesium plates.
- Author
-
Rich AM, Rubin W, Rickli S, Akhmetshina T, Cossu J, Berger L, Magno M, Nuss KM, Schaller B, and Löffler JF
- Abstract
Biodegradable magnesium is a highly desired material for fracture fixation implants because of its good mechanical properties and ability to completely dissolve in the body over time, eliminating the need for a secondary surgery to remove the implant. Despite extensive research on these materials, there remains a dearth of information regarding critical factors that affect implant performance in clinical applications, such as the in vivo pH and mechanical loading conditions. We developed a measurement system with implantable strain, temperature, pH and motion sensors to characterize magnesium and titanium plates, fixating bilateral zygomatic arch osteotomies in three Swiss alpine sheep for eight weeks. pH 1-2 mm above titanium plates was 6.6 ± 0.4, while for magnesium plates it was slightly elevated to 7.4 ± 0.8. Strains on magnesium plates were higher than on titanium plates, possibly due to the lower Young's modulus of magnesium. One magnesium plate experienced excessive loading, which led to plate failure within 31 h. This is, to our knowledge, the first in vivo strain, temperature, and pH data recorded for magnesium implants used for fracture fixation. These results provide insight into magnesium degradation and its influence on the in vivo environment, and may help to improve material and implant design for future clinical applications., Competing Interests: None., (© 2024 The Authors.)
- Published
- 2024
- Full Text
- View/download PDF
7. Energy Absorption and Beam Damage during Microfocus Synchrotron X-ray Diffraction.
- Author
-
Stanko ŠT, Schawe JEK, Spieckermann F, Eckert J, and Löffler JF
- Abstract
In this study, we combine in situ fast differential scanning calorimetry (FDSC) with synchrotron X-ray measurements to study simultaneously the structure and thermophysical properties of materials. Using the example of the organic compound BCH-52, we show that the X-ray beam can heat the sample and induce a shift of the heat-flow signal. The aim of this paper is to investigate the influence of radiation on sample behavior. The calorimetric data is used to quantify the absorbed beam energy and, together with the diffraction data, reveal an irreversible damage of the sample. The results are especially important for materials with high absorption coefficients and for high-energy X-ray and electron beams. Our findings illustrate that FDSC combined with X-ray diffraction is a suitable characterization method when beam damage must be minimized.
- Published
- 2024
- Full Text
- View/download PDF
8. Human Body-Fluid-Assisted Fracture of Zinc Alloys as Biodegradable Temporary Implants: Challenges, Research Needs and Way Forward.
- Author
-
Singh Raman RK, Wen C, and Löffler JF
- Abstract
Alloys of magnesium, zinc or iron that do not contain toxic elements are attractive as construction material for biodegradable implants, i.e., the type of implants that harmlessly dissolve away within the human body after they have completed their intended task. The synergistic influence of mechanical stress and corrosive human body fluid can cause sudden and catastrophic fracture of bioimplants due to phenomena such as stress corrosion cracking (SCC) and corrosion fatigue (CF). To date, SCC and CF of implants based on Zn have scarcely been investigated. This article is an overview of the challenges, research needs and way forward in understanding human body-fluid-assisted fractures (i.e., SCC and CF) of Zn alloys in human body fluid.
- Published
- 2023
- Full Text
- View/download PDF
9. Long-term in vivo degradation of Mg-Zn-Ca elastic stable intramedullary nails and their influence on the physis of juvenile sheep.
- Author
-
Marek R, Eichler J, Schwarze UY, Fischerauer S, Suljevic O, Berger L, Löffler JF, Uggowitzer PJ, and Weinberg AM
- Subjects
- Animals, Sheep, Calcium, Bone Nails, X-Ray Microtomography, Magnesium pharmacology, Zinc
- Abstract
The use of bioresorbable magnesium (Mg)-based elastic stable intramedullary nails (ESIN) is highly promising for the treatment of pediatric long-bone fractures. Being fully resorbable, a removal surgery is not required, preventing repeated physical and psychological stress for the child. Further, the osteoconductive properties of the material support fracture healing. Nowadays, ESIN are exclusively implanted in a non-transphyseal manner to prevent growth discrepancies, although transphyseal implantation would often be required to guarantee optimized fracture stabilization. Here, we investigated the influence of trans-epiphyseally implanted Mg-Zinc (Zn)-Calcium (Ca) ESIN on the proximal tibial physis of juvenile sheep over a period of three years, until skeletal maturity was reached. We used the two alloying systems ZX10 (Mg-1Zn-0.3Ca, in wt%) and ZX00 (Mg-0.3Zn-0.4Ca, in wt%) for this study. To elaborate potential growth disturbances such as leg-length differences and axis deviations we used a combination of in vivo clinical computed tomography (cCT) and ex vivo micro CT (μCT), and also performed histology studies on the extracted bones to obtain information on the related tissue. Because there is a lack of long-term data regarding the degradation performance of magnesium-based implants, we used cCT and μCT data to evaluate the implant volume, gas volume and degradation rate of both alloying systems over a period of 148 weeks. We show that transepiphyseal implantation of Mg-Zn-Ca ESIN has no negative influence on the longitudinal bone growth in juvenile sheep, and that there is no axis deviation observed in all cases. We also illustrate that 95 % of the ESIN degraded over nearly three years, converging the time point of full resorption. We thus conclude that both, ZX10 and ZX00, constitute promising implant materials for the ESIN technique., Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Annelie-Martina Weinberg reports a relationship with Bioretec YO that includes: consulting or advisory., (Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
10. The combined effect of zinc and calcium on the biodegradation of ultrahigh-purity magnesium implants.
- Author
-
Okutan B, Schwarze UY, Berger L, Martinez DC, Herber V, Suljevic O, Plocinski T, Swieszkowski W, Santos SG, Schindl R, Löffler JF, Weinberg AM, and Sommer NG
- Subjects
- Rats, Animals, X-Ray Microtomography, Prostheses and Implants, Osseointegration, Calcium, Dietary pharmacology, Magnesium pharmacology, Zinc pharmacology
- Abstract
Magnesium (Mg)-based implants are promising candidates for orthopedic interventions, because of their biocompatibility, good mechanical features, and ability to degrade completely in the body, eliminating the need for an additional removal surgery. In the present study, we synthesized and investigated two Mg-based materials, ultrahigh-purity ZX00 (Mg-Zn-Ca; <0.5 wt% Zn and <0.5 wt% Ca, in wt%; Fe-content <1 ppm) and ultrahigh-purity Mg (XHP-Mg, >99.999 wt% Mg; Fe-content <1 ppm), in vitro and in vivo in juvenile healthy rats to clarify the effect of the alloying elements Zn and Ca on mechanical properties, microstructure, cytocompatibility and degradation rate. Potential differences in bone formation and bone in-growth were also assessed and compared with state-of-the-art non-degradable titanium (Ti)-implanted, sham-operated, and control (non-intervention) groups, using micro-computed tomography, histology and scanning electron microscopy. At 6 and 24 weeks after implantation, serum alkaline phosphatase (ALP), calcium (Ca), and Mg level were measured and bone marrow stromal cells (BMSCs) were isolated for real-time PCR analysis. Results show that ZX00 implants have smaller grain size and superior mechanical properties than XHP-Mg, and that both reveal good biocompatibility in cytocompatibilty tests. ZX00 homogenously degraded with an increased gas accumulation 12 and 24 weeks after implantation, whereas XHP-Mg exhibited higher gas accumulation already at 2 weeks. Serum ALP, Ca, and Mg levels were comparable among all groups and both Mg-based implants led to similar relative expression levels of Alp, Runx2, and Bmp-2 genes at weeks 6 and 24. Histologically, Mg-based implants are superior for new bone tissue formation and bone in-growth compared to Ti implants. Furthermore, by tracking the sequence of multicolor fluorochrome labels, we observed higher mineral apposition rate at week 2 in both Mg-based implants compared to the control groups. Our findings suggest that (i) ZX00 and XHP-Mg support bone formation and remodeling, (ii) both Mg-based implants are superior to Ti implants in terms of new bone tissue formation and osseointegration, and (iii) ZX00 is more favorable due to its lower degradation rate and moderate gas accumulation., Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Annelie-Martina Weinberg reports equipment, drugs, or supplies was provided by Hofer GmbH & Co KG, Austria. Annelie-Martina Weinberg reports a relationship with Hofer GmbH & Co KG that includes: consulting or advisory. Jörg Löffler has patent #EP2804964B1 licensed to ETH Zürich., (Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
11. Implant degradation of low-alloyed Mg-Zn-Ca in osteoporotic, old and juvenile rats.
- Author
-
Sommer NG, Hirzberger D, Paar L, Berger L, Ćwieka H, Schwarze UY, Herber V, Okutan B, Bodey AJ, Willumeit-Römer R, Zeller-Plumhoff B, Löffler JF, and Weinberg AM
- Subjects
- Animals, Female, Humans, Magnesium pharmacology, Magnesium therapeutic use, Osseointegration, Ovariectomy, Rats, Rats, Sprague-Dawley, X-Ray Microtomography, Zinc therapeutic use, Alloys therapeutic use, Osteoporosis pathology
- Abstract
Implant removal is unnecessary for biodegradable magnesium (Mg)-based implants and, therefore, the related risk for implant-induced fractures is limited. Aging, on the other hand, is associated with low bone-turnover and decreased bone mass and density, and thus increased fracture risk. Osteoporosis is accompanied by Mg deficiency, therefore, we hypothesized that Mg-based implants may support bone formation by Mg
2+ ion release in an ovariectomy-induced osteoporotic rat model. Hence, we investigated osseointegration and implant degradation of a low-alloyed, degrading Mg-Zn-Ca implant (ZX00) in ovariectomy-induced osteoporotic (Osteo), old healthy (OH), and juvenile healthy (JH) groups of female Sprague Dawley rats via in vivo micro-computed tomography (µCT). For the Osteo rats, we demonstrate diminished trabecular bone already after 8 weeks upon ovariectomy and significantly enhanced implant volume loss, with correspondingly pronounced gas formation, compared to the OH and JH groups. Sclerotic rim development was observed in about half of the osteoporotic rats, suggesting a prevention from foreign-body and osteonecrosis development. Synchrotron radiation-based µCT confirmed lower bone volume fractions in the Osteo group compared to the OH and JH groups. Qualitative histological analysis additionally visualized the enhanced implant degradation in the Osteo group. To date, ZX00 provides an interesting implant material for young and older healthy patients, but it may not be of advantage in pharmacologically untreated osteoporotic conditions. STATEMENT OF SIGNIFICANCE: Magnesium-based implants are promising candidates for treatment of osteoporotic fractures because of their biodegradable, biomechanical, anti-bacterial and bone regenerative properties. Here we investigate magnesium‒zinc‒calcium implant materials in a rat model with ovariectomy-induced osteoporosis (Osteo group) and compare the related osseointegration and implant degradation with the results obtained for old healthy (OH) and juvenile healthy (JH) rats. The work applied an appropriate disease model for osteoporosis and focused in particular on long-term implant degradation for different bone conditions. Enhanced implant degradation and sclerotic rim formation was observed in osteoporotic rats, which illustrates that the setting of different bone models generates significantly modified clinical outcome. It further illustrated that these differences must be taken into account in future biodegradable implant development., Competing Interests: Declaration of Competing Interest We declare that the Medical University of Graz received funding from the “Österreichische Gesellschaft für Knochen- und Mineralstoffwechsel” (ÖGKM). Prof. Annelie-Martina Weinberg is a shareholder and consultant of Bioretec Ltd., (Copyright © 2022. Published by Elsevier Ltd.)- Published
- 2022
- Full Text
- View/download PDF
12. Atomic structure evolution related to the Invar effect in Fe-based bulk metallic glasses.
- Author
-
Firlus A, Stoica M, Michalik S, Schäublin RE, and Löffler JF
- Abstract
The Invar effect is universally observed in Fe-based bulk metallic glasses. However, there is limited understanding on how this effect manifests at the atomic scale. Here, we use in-situ synchrotron-based high-energy X-ray diffraction to study the structural transformations of (Fe
71.2 B24 Y4.8 )96 Nb4 and (Fe73.2 B22 Y4.8 )95 Mo5 bulk metallic glasses around the Curie temperature to understand the Invar effect they exhibit. The first two diffraction peaks shift in accordance with the macroscopically measured thermal expansion, which reveals the Invar effect. Additionally, the nearest-neighbor Fe-Fe pair distance correlates well with the macroscopic thermal expansion. In-situ X-ray diffraction is thus able to elucidate the Invar effect in Fe-based metallic glasses at the atomic scale. Here, we find that the Invar effect is not just a macroscopic effect but has a clear atomistic equivalent in the average Fe-Fe pair distance and also shows itself in higher-order atomic shells composed of multiple atom species., (© 2022. The Author(s).)- Published
- 2022
- Full Text
- View/download PDF
13. 3D nanoscale analysis of bone healing around degrading Mg implants evaluated by X-ray scattering tensor tomography.
- Author
-
Liebi M, Lutz-Bueno V, Guizar-Sicairos M, Schönbauer BM, Eichler J, Martinelli E, Löffler JF, Weinberg A, Lichtenegger H, and Grünewald TA
- Subjects
- Animals, Bone and Bones, Rats, Tomography, X-Ray, X-Rays, Magnesium pharmacology, Prostheses and Implants
- Abstract
The nanostructural adaptation of bone is crucial for its biocompatibility with orthopedic implants. The bone nanostructure also determines its mechanical properties and performance. However, the bone's temporal and spatial nanoadaptation around degrading implants remains largely unknown. Here, we present insights into this important bone adaptation by applying scanning electron microscopy, elemental analysis, and small-angle X-ray scattering tensor tomography (SASTT). We extend the novel SASTT reconstruction method and provide a 3D scattering reciprocal space map per voxel of the sample's volume. From this reconstruction, parameters such as the thickness of the bone mineral particles are quantified, which provide additional information on nanostructural adaptation of bone during healing. We selected a rat femoral bone and a degrading ZX10 magnesium implant as model system, and investigated it over the course of 18 months, using a sham as control. We observe that the bone's nanostructural adaptation starts with an initially fast interfacial bone growth close to the implant, which spreads by a re-orientation of the nanostructure in the bone volume around the implant, and is consolidated in the later degradation stages. These observations reveal the complex bulk bone-implant interactions and enable future research on the related biomechanical bone responses. STATEMENT OF SIGNIFICANCE: Traumatic bone injuries are among the most frequent causes of surgical treatment, and often require the placement of an implant. The ideal implant supports and induces bone formation, while being mechanically and chemically adapted to the bone structure, ensuring a gradual load transfer. While magnesium implants fulfill these requirements, the nanostructural changes during bone healing and implant degradation remain not completely elucidated. Here, we unveil these processes in rat femoral bones with ZX10 magnesium implants and show different stages of bone healing in such a model system., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021. Published by Elsevier Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
14. X-ray Diffraction Computed Nanotomography Applied to Solve the Structure of Hierarchically Phase-Separated Metallic Glass.
- Author
-
Stoica M, Sarac B, Spieckermann F, Wright J, Gammer C, Han J, Gostin PF, Eckert J, and Löffler JF
- Abstract
The structure of matter at the nanoscale, in particular that of amorphous metallic alloys, is of vital importance for functionalization. With the availability of synchrotron radiation, it is now possible to visualize the internal features of metallic samples without physically destroying them. Methods based on computed tomography have recently been employed to explore the local features. Tomographic reconstruction, while it is relatively uncomplicated for crystalline materials, may generate undesired artifacts when applied to featureless amorphous or nanostructured metallic alloys. In this study we show that X-ray diffraction computed nanotomography can provide accurate details of the internal structure of a metallic glass. We demonstrate the power of the method by applying it to a hierarchically phase-separated amorphous sample with a small volume fraction of crystalline inclusions, focusing the X-ray beam to 500 nm and ensuring a sub-micrometer 2D resolution via the number of scans.
- Published
- 2021
- Full Text
- View/download PDF
15. Structural relaxation in layered, non-stoichiometric Fe 7 S 8 .
- Author
-
Koulialias D, Schawe JEK, Löffler JF, and Gehring AU
- Abstract
In this study, we investigate the kinetics of the enantiotropic solid-solid β-transition in Fe7S8 pyrrhotite, which presents a prominent example of a metal-nonmetal compound with layered crystal structure. The low-temperature (4C) and high-temperature (1C) modifications differ in their crystallographic unit-cell dimension, vacancy distribution, and magnetic ordering in the crystal lattice. Fast differential scanning calorimetry (FDSC) reveals that cooling of the paramagnetic 1C phase below the transformation temperature Tβ = 597 K, which is also the Curie temperature, generates a metastable phase that transforms into the ferrimagnetic 4C phase with high vacancy order upon further annealing below Tβ. Upon fast cooling, the low-temperature modification shows an energetically excited phase with higher entropy that relaxes towards the equilibrated pyrrhotite polymorph. The kinetics of the superheating and the structural relaxation as obtained from FDSC experiments provide deeper insight into the stability of Fe7S8 polymorphs. This may pave a new path to decipher in detail the kinetics of solid-solid phase transformations and the long-term lifespan of defects in Earth and synthetic materials.
- Published
- 2021
- Full Text
- View/download PDF
16. Unconventional magnetization textures and domain-wall pinning in Sm-Co magnets.
- Author
-
Pierobon L, Kovács A, Schäublin RE, Gerstl SSA, Caron J, Wyss UV, Dunin-Borkowski RE, Löffler JF, and Charilaou M
- Abstract
Some of the best-performing high-temperature magnets are Sm-Co-based alloys with a microstructure that comprises an [Formula: see text] matrix and magnetically hard [Formula: see text] cell walls. This generates a dense domain-wall-pinning network that endows the material with remarkable magnetic hardness. A precise understanding of the coupling between magnetism and microstructure is essential for enhancing the performance of Sm-Co magnets, but experiments and theory have not yet converged to a unified model. Here, transmission electron microscopy, atom probe tomography, and nanometer-resolution off-axis electron holography have been combined with micromagnetic simulations to reveal that the magnetization state in Sm-Co magnets results from curling instabilities and domain-wall pinning effects at the intersections of phases with different magnetic hardness. Additionally, this study has found that topologically non-trivial magnetic domains separated by a complex network of domain walls play a key role in the magnetic state by acting as nucleation sites for magnetization reversal. These findings reveal previously hidden aspects of magnetism in Sm-Co magnets and, by identifying weak points in the microstructure, provide guidelines for improving these high-performance magnetic materials.
- Published
- 2020
- Full Text
- View/download PDF
17. Structured nanoscale metallic glass fibres with extreme aspect ratios.
- Author
-
Yan W, Richard I, Kurtuldu G, James ND, Schiavone G, Squair JW, Nguyen-Dang T, Das Gupta T, Qu Y, Cao JD, Ignatans R, Lacour SP, Tileli V, Courtine G, Löffler JF, and Sorin F
- Abstract
Micro- and nanoscale metallic glasses offer exciting opportunities for both fundamental research and applications in healthcare, micro-engineering, optics and electronics. The scientific and technological challenges associated with the fabrication and utilization of nanoscale metallic glasses, however, remain unresolved. Here, we present a simple and scalable approach for the fabrication of metallic glass fibres with nanoscale architectures based on their thermal co-drawing within a polymer matrix with matched rheological properties. Our method yields well-ordered and uniform metallic glasses with controllable feature sizes down to a few tens of nanometres, and aspect ratios greater than 10
10 . We combine fluid dynamics and advanced in situ transmission electron microscopy analysis to elucidate the interplay between fluid instability and crystallization kinetics that determines the achievable feature sizes. Our approach yields complex fibre architectures that, combined with other functional materials, enable new advanced all-in-fibre devices. We demonstrate in particular an implantable metallic glass-based fibre probe tested in vivo for a stable brain-machine interface that paves the way towards innovative high-performance and multifunctional neuro-probes.- Published
- 2020
- Full Text
- View/download PDF
18. A lean magnesium-zinc-calcium alloy ZX00 used for bone fracture stabilization in a large growing-animal model.
- Author
-
Holweg P, Berger L, Cihova M, Donohue N, Clement B, Schwarze U, Sommer NG, Hohenberger G, van den Beucken JJJP, Seibert F, Leithner A, Löffler JF, and Weinberg AM
- Subjects
- Absorbable Implants, Animals, Calcium, Child, Humans, Magnesium, Materials Testing, Models, Animal, Zinc, Alloys, Fractures, Bone
- Abstract
Over the last decade, demand has increased for developing new, alternative materials in pediatric trauma care to overcome the disadvantages associated with conventional implant materials. Magnesium (Mg)-based alloys seem to adequately fulfill the vision of a homogeneously resorbable, biocompatible, load-bearing and functionally supportive implant. The aim of the present study is to introduce the high-strength, lean alloy Mg‒0.45Zn‒0.45Ca, in wt% (ZX00), and for the first time investigate the clinical applicability of screw osteosynthesis using this alloy that contains no rare-earth elements. The alloy was applied in a growing sheep model with osteotomized bone (simulating a fracture) and compared to a non-osteotomy control group regarding degradation behavior and fracture healing. The alloy exhibits an ultimate tensile strength of 285.7 ± 3.1 MPa, an elongation at fracture of 18.2 ± 2.1%, and a reduced in vitro degradation rate compared to alloys containing higher amounts of Zn. In vivo, no significant difference between the osteotomized bone and the control group was found regarding the change in screw volume over implantation time. Therefore, it can be concluded that the fracture healing process, including its effects on the surrounding area, has no significant influence on degradation behavior. There was also no negative influence from hydrogen-gas formation on fracture healing. Despite the proximal and distal screws showing chronologically different gas release, the osteotomy showed complete consolidation. STATEMENT OF SIGNIFICANCE: Conventional implants involve several disadvantages in pediatric trauma care. Magnesium-based alloys seem to overcome these issues as discussed in the recent literature. This study evaluates the clinical applicability of high-strength lean Mg‒0.45Zn‒0.45Ca (ZX00) screws in a growing-sheep model. Two groups, one including a simulated fracture and one group without fracture, underwent implantation of the alloy and were compared to each other. No significant difference regarding screw volume was observed between the groups. There was no negative influence of hydrogen-gas formation on fracture healing and a complete fracture consolidation was found after 12 weeks for all animals investigated., Competing Interests: Declaration of Competing Interest None., (Copyright © 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
19. Multistep Crystallization and Melting Pathways in the Free-Energy Landscape of a Au-Si Eutectic Alloy.
- Author
-
Kurtuldu G and Löffler JF
- Abstract
Crystals do eventually melt if they are heated to their characteristic melting point. However, this is practically only the case for high-temperature stable crystals, whereas low-temperature metastable crystals generally transform, before melting, into a more stable solid during heating. Here, it is illustrated that low-temperature crystals can, however, be melted via fast differential scanning calorimetry (FDSC), even in metallic systems where nucleation and growth kinetics are rapid. For a Au-Si eutectic alloy, various metastable and stable solid states, i.e., (Au-α), (Au-β), γ, and (Au-Si), which form under well-controlled conditions and melt at high heating rates by preventing the metastable-to-stable solid phase transition, are isolated. It is demonstrated that Au
81.4 Si18.6 can fully melt at various temperatures, i.e., 294 °C, 312 °C, 352 °C, and 363 °C, with differing melting enthalpies ranging from 6.52 to 9.83 kJ mol-1 . The melting and crystallization paths of the metastable solids are determined by constructing an energy-temperature diagram. This approach advances the general understanding of nucleation in metallic and other systems, and is expected to contribute to the detailed understanding of thermophysical phenomena that occur at spatially reduced dimensions and/or short time scales, for example in thin-film deposition, nanomaterials production, or additive manufacturing., Competing Interests: The authors declare no conflict of interest., (© 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.)- Published
- 2020
- Full Text
- View/download PDF
20. The role of zinc in the biocorrosion behavior of resorbable Mg‒Zn‒Ca alloys.
- Author
-
Cihova M, Martinelli E, Schmutz P, Myrissa A, Schäublin R, Weinberg AM, Uggowitzer PJ, and Löffler JF
- Subjects
- Animals, Body Fluids chemistry, Bone and Bones physiology, Corrosion, Electricity, Electrochemical Techniques, Electrodes, Hydrogen chemistry, Implants, Experimental, Rats, Sprague-Dawley, Thermodynamics, Tomography, X-Ray Computed, Alloys chemistry, Calcium chemistry, Magnesium chemistry, Zinc chemistry
- Abstract
Zinc- and calcium-containing magnesium alloys, denominated ZX alloys, excel as temporary implant materials because of their composition made of physiologically essential minerals and lack of commonly used rare-earth alloying elements. This study documents the specific role of nanometric intermetallic particles (IMPs) on the in vitro and in vivo biocorrosion behavior of two ZX-lean alloys, Mg‒Zn1.0‒Ca0.3 (ZX10) and Mg‒Zn1.5‒Ca0.25 (ZX20) (in wt.%). These alloys were designed according to thermodynamic considerations by finely adjusting the nominal Zn content towards microstructures that differ solely in the type of phase composing the IMPs: ZX10, with 1.0 wt.% Zn, hosts binary Mg
2 Ca-phase IMPs, while ZX20, with 1.5 wt.% Zn, hosts ternary IM1-phase IMPs. Electrochemical methods and the hydrogen-gas evolution method were deployed and complemented by transmission electron microscopy analyses. These techniques used in concert reveal that the Mg2 Ca-type IMPs anodically dissolve preferentially and completely, while the IM1-type IMPs act as nano-cathodes, facilitating a faster dissolution of ZX20 compared to ZX10. Additionally, a dynamically increasing cathodic reactivity with progressing dissolution was observed for both alloys. This effect is explained by redeposits of Zn on the corroding surface, which act as additional nano-cathodes and facilitate enhanced cathodic reaction kinetics. The higher degradation rate of ZX20 was verified in vivo via micro-computed tomography upon implantation of both materials into femurs of Sprague DawleyⓇ rats. Both alloys were well integrated with direct bone‒implant contact observable 4 weeks post operationem, and an appropriately slow and homogeneous degradation could be observed with no adverse effects on the surrounding tissue. The results suggest that both alloys qualify as new temporary implant materials, and that a minor adjustment of the Zn content may function as a lever for tuning the degradation rate towards desired applications. STATEMENT OF SIGNIFICANCE: In Mg‒Zn‒Ca (ZX)-lean alloys Zn is the most electropositive element, and thus requires special attention in the investigation of biocorrosion mechanisms acting on these alloys. Even a small increase of only 0.5 wt.% Zn is shown to accelerate the biodegradation rate in both simulated body conditions and in vivo. This is possible due to Zn's role in influencing the type of intermetallic particles (IMPs) in these alloys. These IMPs in turn, even though minute in size, are shown to govern the biocorrosion behavior on the macroscopic scale. The deep understanding gained in this study on the role of Zn and of the IMP type it governs is crucial to ensuring a safe and controllable implant degradation., (Copyright © 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.)- Published
- 2019
- Full Text
- View/download PDF
21. Size-dependent diffusion controls natural aging in aluminium alloys.
- Author
-
Dumitraschkewitz P, Uggowitzer PJ, Gerstl SSA, Löffler JF, and Pogatscher S
- Abstract
A key question in materials science is how fast properties evolve, which relates to the kinetics of phase transformations. In metals, kinetics is primarily connected to diffusion, which for substitutional elements is enabled via mobile atomic-lattice vacancies. In fact, non-equilibrium vacancies are often required for structural changes. Rapid quenching of various important alloys, such as Al- or Mg-alloys, results for example in natural aging, i.e. slight movements of solute atoms in the material, which significantly alter the material properties. In this study we demonstrate a size effect of natural aging in an AlMgSi alloy via atom probe tomography with near-atomic image resolution. We show that non-equilibrium vacancy diffusional processes are generally stopped when the sample size reaches the nanometer scale. This precludes clustering and natural aging in samples below a certain size and has implications towards the study of non-equilibrium diffusion and microstructural changes via microscopy techniques.
- Published
- 2019
- Full Text
- View/download PDF
22. Towards refining microstructures of biodegradable magnesium alloy WE43 by spark plasma sintering.
- Author
-
Soderlind J, Cihova M, Schäublin R, Risbud S, and Löffler JF
- Subjects
- Electrons, Hardness, X-Ray Diffraction, Alloys chemistry, Biocompatible Materials chemistry, Magnesium chemistry, Materials Testing methods, Plasma Gases chemistry
- Abstract
Microstructural refinement of magnesium (Mg) alloys is beneficial for mechanical and corrosion properties, both of which are critical for their successful application as temporary implant materials. One method of achieving a refined microstructure is through rapid solidification via gas-atomization-powder production. In this study we investigated spark plasma sintering (SPS) as a potential processing method for maintaining this refined microstructure while achieving a range of porosities up to full densification. We characterized the microstructural evolution as a function of sintering temperature from 250 to 450 °C for the alloy WE43 using multi-scale correlative microscopy techniques, including light microscopy and scanning and transmission electron microscopy-based methods. The spatial distribution of the two major alloying elements, neodymium (Nd) and yttrium (Y), was determined and the intermetallic phases they form identified using energy dispersive X-ray spectroscopy in conjunction with electron diffraction. The gas-atomized powder microstructure consists of Mg-rich dendrites and a percolating interdendritic Mg-Nd-Y ternary phase with structure Mg
14 Nd2 Y, surrounded by a high Nd and Y content in solid solution. This microstructure is maintained up to a sintering temperature of 350 °C, while with higher sintering temperatures segregation of Nd and Y dominates. The percolating ternary phase breaks up into faceted globular precipitates with structure Mg5 Nd, which is isomorphous to Mg14 Nd2 Y. Y comes out of solution and migrates to previous powder-particle surfaces, possibly forming Y2 O3 . Sample densities ranged from 64 to 100% for sintering temperatures of 250 to 450 °C, respectively, and the grain size remained constant at about 10 µm. SPS is demonstrated to be an attractive alternative method for processing Mg alloys to a wide range of porosities and fine microstructures. The microstructural refinement achieved by SPS holds the potential for slow and homogeneous corrosion. STATEMENT OF SIGNIFICANCE: This study presents the impact spark plasma sintering (SPS) has on the microstructure of WE43, a magnesium alloy used for biodegradable implants. SPS is of great interest in this context as it is scalable, rapid, and has the potential for tuning density while maintaining a refined microstructure. The microstructure and density are explored from the gas-atomized powder to the densified material using electron microscopy and chemical mapping from the macro- to the nano-level. The insights gained reveal an original evolution of rare-earth element distribution with an isomorphous chemistry change, while the microstructure develops from the non-equilibrium state (powder) towards an equilibrium structure upon sintering. This study, including measurements of mechanical performance, sets the premises of SPS for the fabrication of Mg-based implants with tunable characteristics., (Copyright © 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.)- Published
- 2019
- Full Text
- View/download PDF
23. Laser additive manufacturing of biodegradable magnesium alloy WE43: A detailed microstructure analysis.
- Author
-
Bär F, Berger L, Jauer L, Kurtuldu G, Schäublin R, Schleifenbaum JH, and Löffler JF
- Subjects
- Hot Temperature, Alloys chemistry, Biocompatible Materials chemistry, Lasers, Magnesium chemistry, Manufactured Materials
- Abstract
WE43, a magnesium alloy containing yttrium and neodymium as main alloying elements, has become a well-established bioresorbable implant material. Implants made of WE43 are often fabricated by powder extrusion and subsequent machining, but for more complex geometries laser powder bed fusion (LPBF) appears to be a promising alternative. However, the extremely high cooling rates and subsequent heat treatment after solidification of the melt pool involved in this process induce a drastic change in microstructure, which governs mechanical properties and degradation behaviour in a way that is still unclear. In this study we investigated the changes in the microstructure of WE43 induced by LPBF in comparison to that of cast WE43. We did this mainly by electron microscopy imaging, and chemical mapping based on energy-dispersive X-ray spectroscopy in conjunction with electron diffraction for the identification of the various phases. We identified different types of microstructure: an equiaxed grain zone in the center of the laser-induced melt pool, and a lamellar zone and a partially melted zone at its border. The lamellar zone presents dendritic lamellae lying on the Mg basal plane and separated by aligned Nd-rich nanometric intermetallic phases. They appear as globular particles made of Mg
3 Nd and as platelets made of Mg41 Nd5 occurring on Mg prismatic planes. Yttrium is found in solid solution and in oxide particles stemming from the powder particles' shell. Due to the heat influence on the lamellar zone during subsequent laser passes, a strong texture developed in the bulk material after substantial grain growth. STATEMENT OF SIGNIFICANCE: Additively manufactured magnesium alloys have the potential of providing a major breakthrough in bone-reconstruction surgery by serving as biodegradable porous scaffold material. This study is the first to report in detail on the microstructure development of the established magnesium alloy WE43 fabricated by the additive manufacturing process of Laser Powder Bed Fusion (LPBF). It presents unique microstructural features which originate from the laser-melting process. An in situ transmission electron microscopy heating experiment further demonstrates the development of two distinct intermetallic phases in additively manufactured WE43 alloys. While one forms already during solidification, the other precipitates due to the ongoing heat treatment during LPBF processing., (Copyright © 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.)- Published
- 2019
- Full Text
- View/download PDF
24. Biocorrosion Zoomed In: Evidence for Dealloying of Nanometric Intermetallic Particles in Magnesium Alloys.
- Author
-
Cihova M, Schmutz P, Schäublin R, and Löffler JF
- Abstract
Biodegradable magnesium alloys generally contain intermetallic phases on the micro- or nanoscale, which can initiate and control local corrosion processes via microgalvanic coupling. However, the experimental difficulties in characterizing active degradation on the nanoscale have so far limited the understanding of how these materials degrade in complex physiological environments. Here a quasi-in situ experiment based on transmission electron microscopy (TEM) is designed, which enables the initial corrosion attack at nanometric particles to be accessed within the first seconds of immersion. Combined with high-resolution ex situ cross-sectional TEM analysis of a well-developed corrosion-product layer, mechanistic insights into Mg-alloys' degradation on the nanoscale are provided over a large range of immersion times. Applying this methodology to lean Mg-Zn-Ca alloys and following in detail the dissolution of their nanometric Zn- and Ca-rich particles the in statu nascendi observation of intermetallic-particle dealloying is documented for magnesium alloys, where electrochemically active Ca and Mg preferentially dissolve and electropositive Zn enriches, inducing the particles' gradual ennoblement. Based on electrochemical theory, here, the concept of cathodic-polarization-induced dealloying, which controls the dynamic microstructural changes, is presented. The general prerequisites for this new dealloying mechanism to occur in multicomponent alloys and its distinction to other dealloying modes are also discussed., (© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)
- Published
- 2019
- Full Text
- View/download PDF
25. 3D Printing of Salt as a Template for Magnesium with Structured Porosity.
- Author
-
Kleger N, Cihova M, Masania K, Studart AR, and Löffler JF
- Abstract
Porosity is an essential feature in a wide range of applications that combine light weight with high surface area and tunable density. Porous materials can be easily prepared with a vast variety of chemistries using the salt-leaching technique. However, this templating approach has so far been limited to the fabrication of structures with random porosity and relatively simple macroscopic shapes. Here, a technique is reported that combines the ease of salt leaching with the complex shaping possibilities given by additive manufacturing (AM). By tuning the composition of surfactant and solvent, the salt-based paste is rheologically engineered and printed via direct ink writing into grid-like structures displaying structured pores that span from the sub-millimeter to the macroscopic scale. As a proof of concept, dried and sintered NaCl templates are infiltrated with magnesium (Mg), which is typically highly challenging to process by conventional AM techniques due to its highly oxidative nature and high vapor pressure. Mg scaffolds with well-controlled, ordered porosity are obtained after salt removal. The tunable mechanical properties and the potential to be predictably bioresorbed by the human body make these Mg scaffolds attractive for biomedical implants and demonstrate the great potential of this additive technique., (© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)
- Published
- 2019
- Full Text
- View/download PDF
26. Exceptional Strengthening of Biodegradable Mg-Zn-Ca Alloys through High Pressure Torsion and Subsequent Heat Treatment.
- Author
-
Horky J, Ghaffar A, Werbach K, Mingler B, Pogatscher S, Schäublin R, Setman D, Uggowitzer PJ, Löffler JF, and Zehetbauer MJ
- Abstract
In this study, two biodegradable Mg-Zn-Ca alloys with alloy content of less than 1 wt % were strengthened via high pressure torsion (HPT). A subsequent heat treatment at temperatures of around 0.45 T
m led to an additional, sometimes even larger increase in both hardness and tensile strength. A hardness of more than 110 HV and tensile strength of more than 300 MPa were achieved in Mg-0.2Zn-0.5Ca by this procedure. Microstructural analyses were conducted by scanning and transmission electron microscopy (SEM and TEM, respectively) and atom probe tomography (APT) to reveal the origin of this strength increase. They indicated a grain size in the sub-micron range, Ca-rich precipitates, and segregation of the alloying elements at the grain boundaries after HPT-processing. While the grain size and segregation remained mostly unchanged during the heat treatment, the size and density of the precipitates increased slightly. However, estimates with an Orowan-type equation showed that precipitation hardening cannot account for the strength increase observed. Instead, the high concentration of vacancies after HPT-processing is thought to lead to the formation of vacancy agglomerates and dislocation loops in the basal plane, where they represent particularly strong obstacles to dislocation movement, thus, accounting for the considerable strength increase observed. This idea is substantiated by theoretical considerations and quenching experiments, which also show an increase in hardness when the same heat treatment is applied.- Published
- 2019
- Full Text
- View/download PDF
27. Cation diffusion patterns across the magneto-structural transition in Fe 7 S 8 .
- Author
-
Koulialias D, Weidler PG, Charilaou M, Löffler JF, and Gehring AU
- Abstract
Migration of atoms in solids during diffusion-dependent reactions is relatively fast and generally not directly recordable in experiments. Here we present an experimental framework that includes fast differential scanning calorimetry to resolve cation-migration paths in crystalline solids using the reversible magneto-structural transition of 4C to 1C pyrrhotite as a testbed. The transition between these two polymorphic Fe
7 S8 phases at about 600 K is a diffusive process of vacancies, respectively of Fe in octahedral interstitial sites within a hexagonal close-packed lattice of sulfur, and it coincides with the Curie temperature of 4C pyrrhotite. The Fe cations migrate along three kinds of diffusion paths, and their enthalpy contributions to the total reaction enthalpy are taken to define the diffusion patterns in the endothermic reaction and the exothermic back-reaction, respectively. Our experimental findings provide insight into the potential of diffusion patterns to disentangle ordering mechanisms in solids.- Published
- 2019
- Full Text
- View/download PDF
28. Existence of multiple critical cooling rates which generate different types of monolithic metallic glass.
- Author
-
Schawe JEK and Löffler JF
- Abstract
Via fast differential scanning calorimetry using an Au-based glass as an example, we show that metallic glasses should be classified into two types of amorphous/monolithic glass. The first type, termed self-doped glass (SDG), forms quenched-in nuclei or nucleation precursors upon cooling, whereas in the so-called chemically homogeneous glass (CHG) no quenched-in structures are found. For the Au-based glass investigated, the critical cooling and heating rates for the SDG are 500 K s
-1 and 20,000 K s-1 , respectively; for the CHG they are 4000 K s-1 and 6000 K s-1 . The similarity in the critical rates for CHG, so far not reported in literature, and CHG's tendency towards stochastic nucleation underline the novelty of this glass state. Identifying different types of metallic glass, as is possible by advanced chip calorimetry, and comparing them with molecular and polymeric systems may help to elaborate a more generalized glass theory and improve metallic glass processing.- Published
- 2019
- Full Text
- View/download PDF
29. Collective antiskyrmion-mediated phase transition and defect-induced melting in chiral magnetic films.
- Author
-
Pierobon L, Moutafis C, Li Y, Löffler JF, and Charilaou M
- Abstract
Magnetic phase transitions are a manifestation of competing interactions whose behavior is critically modified by defects and becomes even more complex when topological constraints are involved. In particular, the investigation of skyrmions and skyrmion lattices offers insight into fundamental processes of topological-charge creation and annihilation upon changing the magnetic state. Nonetheless, the exact physical mechanisms behind these phase transitions remain unresolved. Here, we show numerically that it is possible to collectively reverse the polarity of a skyrmion lattice in a field-induced first-order phase transition via a transient antiskyrmion-lattice state. We thus propose a new type of phase transformation where a skyrmion lattice inverts to another one due to topological constraints. In the presence of even a single defect, the process becomes a second-order phase transition with gradual topological-charge melting. This radical change in the system's behavior from a first-order to a second-order phase transition demonstrates that defects in real materials could prevent us from observing collective topological phenomena. We have systematically compared ultra-thin films with isotropic and anisotropic Dzyaloshinskii-Moriya interactions (DMIs), and demonstrated a nearly identical behavior for such technologically relevant interfacial systems.
- Published
- 2018
- Full Text
- View/download PDF
30. The relation between local structural distortion and the low-temperature magnetic anomaly in Fe 7 S 8 .
- Author
-
Koulialias D, Canévet E, Charilaou M, Weidler PG, Löffler JF, and Gehring AU
- Abstract
Structural defects on an atomic level can crucially impact the magnetic properties of a material. We study this phenomenon by means of magnetometry and powder neutron diffraction on a stoichiometric, monoclinic pyrrhotite (Fe
7 S8 ), which is a classic omission structure with a magnetic anomaly at about 30 K. The initial structural distortion of the pyrrhotite at 300 K caused by the vacancy arrangement decreases upon cooling, and simultaneous to the magnetic anomaly the anisotropic contraction of the unit cell homogenizes the covalency of the Fe-Fe bonds with lengths less than 3.0 Å and the Fe-S-Fe bond angles. These changes on the atomic level affect the spin-orbit coupling and the super-exchange interactions in Fe7 S8 , and trigger the low-temperature magnetic anomaly within a crystallographically stable system.- Published
- 2018
- Full Text
- View/download PDF
31. Comparison of a resorbable magnesium implant in small and large growing-animal models.
- Author
-
Grün NG, Holweg P, Tangl S, Eichler J, Berger L, van den Beucken JJJP, Löffler JF, Klestil T, and Weinberg AM
- Subjects
- Animals, Bone Screws, Bone and Bones drug effects, Bone and Bones physiology, Female, Models, Animal, Osseointegration drug effects, Osteogenesis drug effects, Rats, Sprague-Dawley, Sheep, X-Ray Microtomography, Absorbable Implants, Implants, Experimental, Magnesium pharmacology
- Abstract
Fracture treatment in children needs new implant materials to overcome disadvantages associated with removal surgery. Magnesium-based implants constitute a biocompatible and bioresorbable alternative. In adults and especially in children, implant safety needs to be evaluated. In children the bone turnover rate is higher and implant material might influence growth capacity, and the long-term effect of accumulated particles or ions is more critical due to the host's prolonged post-surgery lifespan. In this study we aimed to investigate the degradation behavior of ZX00 (Mg-0.45Zn-0.45Ca; in wt.%) in a small and a large animal model to find out whether there is a difference between the two models (i) in degradation rate and (ii) in bone formation and in-growth. Our results 6, 12 and 24 weeks after ZX00 implantation showed no negative effects on bone formation and in-growth, and no adverse effects such as fibrotic or sclerotic encapsulation. The degradation rate did not significantly differ between the two growing-animal models, and both showed slow and homogeneous degradation performance. Our conclusion is that small animal models may be sufficient to investigate degradation rates and provide preliminary evidence on bone formation and in-growth of implant materials in a growing-animal model., Statement of Significance: The safety of implant material is of the utmost importance, especially in children, who have enhanced bone turnover, more growth capacity and longer postoperative lifespans. Magnesium (Mg)-based implants have long been of great interest in pediatric orthopedic and trauma surgery, due to their good biocompatibility, biodegradability and biomechanics. In the study documented in this manuscript we investigated Mg-Zn-Ca implant material without rare-earth elements, and compared its outcome in a small and a large growing-animal model. In both models we observed bone formation and in-growth which featured no adverse effects such as fibrotic or sclerotic encapsulation, and slow homogeneous degradation performance of the Mg-based implant material., (Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
32. Monopole-Induced Emergent Electric Fields in Ferromagnetic Nanowires.
- Author
-
Charilaou M, Braun HB, and Löffler JF
- Abstract
We predict that complete magnetization reversal in simple metallic ferromagnetic nanoparticles is directly linked to the pair creation of topological point defects in the form of hedgehog-antihedgehog pairs. These dynamical point defects move at exceptionally high speeds in excess of 1500 m/s, faster than any other known magnetic object. Their rapid motion generates unprecedented solenoidal emergent fields on the order of megavolts per meter, in analogy to the magnetic field of a moving electric charge, providing a striking example that a moving hedgehog constitutes an emergent magnetic monopole.
- Published
- 2018
- Full Text
- View/download PDF
33. The influence of two common sterilization techniques on the corrosion of Mg and its alloys for biomedical applications.
- Author
-
Johnston S, Shi Z, Hoe C, Uggowitzer PJ, Cihova M, Löffler JF, Dargusch MS, and Atrens A
- Subjects
- Corrosion, Alloys chemistry, Magnesium chemistry, Sterilization methods
- Abstract
This paper studied the influence of two common sterilization techniques, ethylene oxide (EO) and gamma irradiation (GI), on the corrosion rate of four Mg-based materials in CO
2 -bicarbonate buffered Hanks' solution. The four materials were: high-purity (HP)-Mg, ZE41, ultra-high purity (XHP)-Mg, and XHP-ZX00. The corrosion rate was measured through mass loss (Pm ) and hydrogen evolution (PH ). Two-way analysis of variance (ANOVA) was conducted to assess the effect of the sterilization techniques on the corrosion rates across the four materials. The ANOVA analyzed the variables of (1) material, (2) sterilization condition (EO, GI, and an unsterilized control group), and (3) the interaction between these two independent variables. Neither sterilization technique (EO and GI) significantly influenced the corrosion rate as measured by Pm (p < 0.84) nor PH (p < 0.08). This result was consistent across the four materials tested, as there was no interaction between the test variables of material and sterilization condition for Pm (p < 0.49) or PH (p < 0.27). As neither EO nor GI influenced the corrosion rates, either of these techniques warrants consideration for use on Mg-based medical implants and devices. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1907-1917, 2018., (© 2017 Wiley Periodicals, Inc.)- Published
- 2018
- Full Text
- View/download PDF
34. Monotropic polymorphism in a glass-forming metallic alloy.
- Author
-
Pogatscher S, Leutenegger D, Schawe JEK, Maris P, Schäublin R, Uggowitzer PJ, and Löffler JF
- Abstract
This study investigates the crystallization and phase transition behavior of the amorphous metallic alloy Au
70 Cu5.5 Ag7.5 Si17 . This alloy has been recently shown to exhibit a transition of a metastable to a more stable crystalline state, occurring via metastable melting under strong non-equilibrium conditions. Such behavior had so far not been observed in other metallic alloys. In this investigation fast differential scanning calorimetry (FDSC) is used to explore crystallization and the solid-liquid-solid transition upon linear heating and during isothermal annealing, as a function of the conditions under which the metastable phase is formed. It is shown that the occurrence of the solid-liquid-solid transformation in FDSC depends on the initial conditions; this is explained by a history-dependent nucleation of the stable crystalline phase. The microstructure was investigated by scanning and transmission electron microscopy and x-ray diffraction. Chemical mapping was performed by energy dispersive x-ray spectrometry. The relationship between the microstructure and the phase transitions observed in FSDC is discussed with respect to the possible kinetic paths of the solid-liquid-solid transition, which is a typical phenomenon in monotropic polymorphism.- Published
- 2018
- Full Text
- View/download PDF
35. Metastable quasicrystal-induced nucleation in a bulk glass-forming liquid.
- Author
-
Kurtuldu G, Shamlaye KF, and Löffler JF
- Abstract
This study presents a unique Mg-based alloy composition in the Mg-Zn-Yb system which exhibits bulk metallic glass, metastable icosahedral quasicrystals (iQCs), and crystalline approximant phases in the as-cast condition. Microscopy revealed a smooth gradual transition from glass to QC. We also report the complete melting of a metastable eutectic phase mixture (including a QC phase), generated via suppression of the metastable-to-stable phase transition at high heating rates using fast differential scanning calorimetry (FDSC). The melting temperature and enthalpy of fusion of this phase mixture could be measured directly, which unambiguously proves its metastability in any temperature range. The kinetic pathway from liquid state to stable solid state (an approximant phase) minimizes the free-energy barrier for nucleation through an intermediate state (metastable QC phase) because of its low solid-liquid interfacial energy. At high undercooling of the liquid, where diffusion is limited, another approximant phase with near-liquid composition forms just above the glass-transition temperature. These experimental results shed light on the competition between metastable and stable crystals, and on glass formation via system frustration associated with the presence of several free-energy minima., Competing Interests: The authors declare no conflict of interest., (Copyright © 2018 the Author(s). Published by PNAS.)
- Published
- 2018
- Full Text
- View/download PDF
36. The influence of biodegradable magnesium implants on the growth plate.
- Author
-
Kraus T, Fischerauer S, Treichler S, Martinelli E, Eichler J, Myrissa A, Zötsch S, Uggowitzer PJ, Löffler JF, and Weinberg AM
- Subjects
- Animals, Bone Remodeling drug effects, Femur anatomy & histology, Femur diagnostic imaging, Femur drug effects, Growth Plate anatomy & histology, Growth Plate diagnostic imaging, Male, Materials Testing, Rats, Sprague-Dawley, X-Ray Microtomography, Biocompatible Materials pharmacology, Growth Plate drug effects, Implants, Experimental, Magnesium pharmacology
- Abstract
Mg-based biodegradable materials are considered promising candidates in the paediatric field due to their favourable mechanical and biological properties and their biodegrading potential that makes a second surgery for implant removal unnecessary. In many cases the surgical fixation technique requires a crossing of the growth plate by the implant in order to achieve an adequate fragment replacement or fracture stabilisation. This study investigates the kinetics of slowly and rapidly degrading Mg alloys in a transphyseal rat model, and also reports on their dynamics in the context of the physis and consecutive bone growth. Twenty-six male Sprague-Dawley rats received either a rapidly degrading (ZX50; n = 13) or a slowly degrading (WZ21; n = 13) Mg alloy, implanted transphyseal into the distal femur. The contralateral leg was drilled in the same manner and served as a direct sham specimen. Degradation behaviour, gas formation, and leg length were measured by continuous in vivo micro CT for up to 52 weeks, and additional high-resolution µCT (HRS) scans and histomorphological analyses of the growth plate were performed. The growth plate was locally destroyed and bone growth was significantly diminished by the fast degradation of ZX50 implants and the accompanying release of large amounts of hydrogen gas. In contrast, WZ21 implants showed homogenous and moderate degradation performance, and the effect on bone growth did not differ significantly from a single drill-hole defect., Statement of Significance: This study is the first that reports on the effects of degrading magnesium implants on the growth plate in a living animal model. The results show that high evolution of hydrogen gas due to rapid Mg degradation can damage the growth plate substantially. Slow degradation, however, such as seen for WZ21 alloys, does not affect the growth plate more than drilling alone, thus meeting one important prerequisite for deployment in paediatric osteosynthesis., (Copyright © 2017. Published by Elsevier Ltd.)
- Published
- 2018
- Full Text
- View/download PDF
37. Electron-band theory inspired design of magnesium-precious metal bulk metallic glasses with high thermal stability and extended ductility.
- Author
-
Laws KJ, Shamlaye KF, Granata D, Koloadin LS, and Löffler JF
- Abstract
Magnesium-based bulk metallic glasses (BMGs) exhibit high specific strengths and excellent glass-forming ability compared to other metallic systems, making them suitable candidates for next-generation materials. However, current Mg-based BMGs tend to exhibit low thermal stability and are prone to structural relaxation and brittle failure. This study presents a range of new magnesium-precious metal-based BMGs from the ternary Mg-Ag-Ca, Mg-Ag-Yb, Mg-Pd-Ca and Mg-Pd-Yb alloy systems with Mg content greater than 67 at.%. These alloys were designed for high ductility by utilising atomic bond-band theory and a topological efficient atomic packing model. BMGs from the Mg-Pd-Ca alloy system exhibit high glass-forming ability with critical casting sizes of up to 3 mm in diameter, the highest glass transition temperatures (>200 °C) of any reported Mg-based BMG to date, and sustained compressive ductility. Alloys from the Mg-Pd-Yb family exhibit critical casting sizes of up to 4 mm in diameter, and the highest compressive plastic (1.59%) and total (3.78%) strain to failure of any so far reported Mg-based glass. The methods and theoretical approaches presented here demonstrate a significant step forward in the ongoing development of this extraordinary class of materials.
- Published
- 2017
- Full Text
- View/download PDF
38. Stress corrosion cracking and corrosion fatigue characterisation of MgZn1Ca0.3 (ZX10) in a simulated physiological environment.
- Author
-
Jafari S, Raman RKS, Davies CHJ, Hofstetter J, Uggowitzer PJ, and Löffler JF
- Subjects
- Absorbable Implants, Corrosion, Tensile Strength, Alloys analysis, Magnesium analysis, Materials Testing
- Abstract
Magnesium (Mg) alloys have attracted great attention as potential materials for biodegradable implants. It is essential that an implant material possesses adequate resistance to cracking/fracture under the simultaneous actions of corrosion and mechanical stresses, i.e., stress corrosion cracking (SCC) and/or corrosion fatigue (CF). This study investigates the deformation behaviour of a newly developed high-strength low-alloy Mg alloy, MgZn1Ca0.3 (ZX10), processed at two different extrusion temperatures of 325 and 400°C (named E325 and E400, respectively), under slow strain tensile and cyclic tension-compression loadings in air and modified simulated body fluid (m-SBF). Extrusion resulted in a bimodal grain size distribution with recrystallised grain sizes of 1.2 μm ± 0.8 μm and 7 ± 5 μm for E325 and E400, respectively. E325 possessed superior tensile and fatigue properties to E400 when tested in air. This is mainly attributed to a grain-boundary strengthening mechanism. However, both E325 and E400 were found to be susceptible to SCC at a strain rate of 3.1×10
-7 s-1 in m-SBF. Moreover, both E325 and E400 showed similar fatigue strength when tested in m-SBF. This is explained on the basis of crack initiation from localised corrosion following tests in m-SBF., (Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.)- Published
- 2017
- Full Text
- View/download PDF
39. µXRF Elemental Mapping of Bioresorbable Magnesium-Based Implants in Bone.
- Author
-
Turyanskaya A, Rauwolf M, Grünewald TA, Meischel M, Stanzl-Tschegg S, Löffler JF, Wobrauschek P, Weinberg AM, Lichtenegger HC, and Streli C
- Abstract
This study investigated the distribution of the elemental constituents of Mg-based implants at various stages of the degradation process in surrounding bone tissue, with a focus on magnesium (Mg), as the main component of the alloy, and yttrium (Y), due to its potential adverse health effects. The measurements were performed on the implant-bearing thin sections of rat bone in a time series of implant degradation between one and 18 months. Micro X-ray fluorescence analysis (μXRF) with a special spectrometer meeting the requirements for the measurements of low-Z elements was used. It was found that the migration and accumulation behaviour of implant degradation products is element-specific. A sharp decrease in Mg was observed in the immediate vicinity of the interface and no specific accumulation or aggregation of Mg in the adjacent bone tissue was detected. By contrast, Y was found to migrate further into the bone over time and to remain in the tissue even after the complete degradation of the implant. Although the nature of Y accumulations must still be clarified, its potential health impact should be considered.
- Published
- 2016
- Full Text
- View/download PDF
40. Long-term in vivo degradation behavior and near-implant distribution of resorbed elements for magnesium alloys WZ21 and ZX50.
- Author
-
Amerstorfer F, Fischerauer SF, Fischer L, Eichler J, Draxler J, Zitek A, Meischel M, Martinelli E, Kraus T, Hann S, Stanzl-Tschegg SE, Uggowitzer PJ, Löffler JF, Weinberg AM, and Prohaska T
- Subjects
- Animals, Calcium analysis, Male, Mass Spectrometry, Phosphorus analysis, Rats, Sprague-Dawley, X-Ray Microtomography, Yttrium analysis, Alloys chemistry, Implants, Experimental, Magnesium chemistry
- Abstract
Unlabelled: We report on the long-term effects of degrading magnesium implants on bone tissue in a growing rat skeleton using continuous in vivo micro-Computed Tomography, histological staining and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). Two different magnesium alloys-one rapidly degrading (ZX50) and one slowly degrading (WZ21)-were used to evaluate the bone response and distribution of released Mg and Y ions in the femur of male Sprague-Dawley rats. Regardless of whether the alloy degrades rapidly or slowly, we found that bone recovers restitutio ad integrum after complete degradation of the magnesium implant. The degradation of the Mg alloys generates a significant increase in Mg concentration in the cortical bone near the remaining implant parts, but the Mg accumulation disappears after the implant degrades completely. The degradation of the Y-containing alloy WZ21 leads to Y enrichment in adjacent bone tissues and in newly formed bone inside the medullary space. Locally high Y concentrations suggest migration not only of Y ions but also of Y-containing intermetallic particles. However, after the full degradation of the implant the Y-enrichment disappears almost completely. Hydrogen gas formation and ion release during implant degradation did not harm bone regeneration in our samples., Statement of Significance: Magnesium is generally considered to be one of the most attractive base materials for biodegradable implants, and many magnesium alloys have been optimized to adjust implant degradation. Delayed degradation, however, generates prolonged presence in the organism with the risk of foreign body reactions. While most studies so far have only ranged from several weeks up to 12months, the present study provides data for complete implant degradation and bone regeneration until 24months, for two magnesium alloys (ZX50, WZ21) with different degradation characteristics. μCT monitoring, histological staining and LA-ICP-MS illustrate the distribution of the elements in the neighboring bony tissues during implant degradation, and reveal in particular high concentrations of the rare-earth element Yttrium., (Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
41. Solid-solid phase transitions via melting in metals.
- Author
-
Pogatscher S, Leutenegger D, Schawe JE, Uggowitzer PJ, and Löffler JF
- Abstract
Observing solid-solid phase transitions in-situ with sufficient temporal and spatial resolution is a great challenge, and is often only possible via computer simulations or in model systems. Recently, a study of polymeric colloidal particles, where the particles mimic atoms, revealed an intermediate liquid state in the transition from one solid to another. While not yet observed there, this finding suggests that such phenomena may also occur in metals and alloys. Here we present experimental evidence for a solid-solid transition via the formation of a metastable liquid in a 'real' atomic system. We observe this transition in a bulk glass-forming metallic system in-situ using fast differential scanning calorimetry. We investigate the corresponding transformation kinetics and discuss the underlying thermodynamics. The mechanism is likely to be a feature of many metallic glasses and metals in general, and may provide further insight into phase transition theory.
- Published
- 2016
- Full Text
- View/download PDF
42. Clustered field evaporation of metallic glasses in atom probe tomography.
- Author
-
Zemp J, Gerstl SSA, Löffler JF, and Schönfeld B
- Abstract
Field evaporation of metallic glasses is a stochastic process combined with spatially and temporally correlated events, which are referred to as clustered evaporation (CE). This phenomenon is investigated by studying the distance between consecutive detector hits. CE is found to be a strongly localized phenomenon (up to 3nm in range) which also depends on the type of evaporating ions. While a similar effect in crystals is attributed to the evaporation of crystalline layers, CE of metallic glasses presumably has a different - as yet unknown - physical origin. The present work provides new perspectives on quantification methods for atom probe tomography of metallic glasses., (Copyright © 2015 Elsevier B.V. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
43. Reaction of bone nanostructure to a biodegrading Magnesium WZ21 implant - A scanning small-angle X-ray scattering time study.
- Author
-
Grünewald TA, Ogier A, Akbarzadeh J, Meischel M, Peterlik H, Stanzl-Tschegg S, Löffler JF, Weinberg AM, and Lichtenegger HC
- Subjects
- Alloys, Animals, Biocompatible Materials chemistry, Bone Resorption, Corrosion, Male, Materials Testing, Nanostructures chemistry, Polymethyl Methacrylate chemistry, Rats, Rats, Sprague-Dawley, Scattering, Radiation, X-Rays, Absorbable Implants, Bone and Bones chemistry, Magnesium chemistry
- Abstract
Understanding the implant-bone interaction is of prime interest for the development of novel biodegrading implants. Magnesium is a very promising material in the class of biodegrading metallic implants, owing to its mechanical properties and excellent immunologic response during healing. However, the influence of degrading Mg implants on the bone nanostructure is still an open question of crucial importance for the design of novel Mg implant alloys. This study investigates the changes in the nanostructure of bone following the application of a degrading WZ21 Mg implant (2wt% Y, 1wt% Zn, 0.25wt% Ca and 0.15wt% Mn) in a murine model system over the course of 15months by small angle X-ray scattering. Our investigations showed a direct response of the bone nanostructure after as little as 1month with a realignment of nano-sized bone mineral platelets along the bone-implant interface. The growth of new bone tissue after implant resorption is characterized by zones of lower mineral platelet thickness and slightly decreased order in the stacking of the platelets. The preferential orientation of the mineral platelets strongly deviates from the normal orientation along the shaft and still roughly follows the implant direction after 15months. We explain our findings by considering geometrical, mechanical and chemical factors during the process of implant resorption., Statement of Significance: The advancement of surgical techniques and the increased life expectancy have caused a growing demand for improved bone implants. Ideally, they should be bio-resorbable, support bone as long as necessary and then be replaced by healthy bone tissue. Magnesium is a promising candidate for this purpose. Various studies have demonstrated its excellent mechanical performance, degradation behaviour and immunologic properties. The structural response of bone, however, is not well known. On the nanometer scale, the arrangement of collagen fibers and calcium mineral platelets is an important indicator of structural integrity. The present study provides insight into nanostructural changes in rat bone at different times after implant placement and different implant degradation states. The results are useful for further improved magnesium alloys., (Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
44. Magnesium from bioresorbable implants: Distribution and impact on the nano- and mineral structure of bone.
- Author
-
Grünewald TA, Rennhofer H, Hesse B, Burghammer M, Stanzl-Tschegg SE, Cotte M, Löffler JF, Weinberg AM, and Lichtenegger HC
- Subjects
- Animals, Calcification, Physiologic, Magnesium pharmacokinetics, Rats, Rats, Sprague-Dawley, X-Ray Diffraction, Biocompatible Materials, Bone and Bones metabolism, Magnesium metabolism, Minerals metabolism
- Abstract
Biocompatibility is a key issue in the development of new implant materials. In this context, a novel class of biodegrading Mg implants exhibits promising properties with regard to inflammatory response and mechanical properties. The interaction between Mg degradation products and the nanoscale structure and mineralization of bone, however, is not yet sufficiently understood. Investigations by synchrotron microbeam x-ray fluorescence (μXRF), small angle x-ray scattering (μSAXS) and x-ray diffraction (μXRD) have shown the impact of degradation speed on the sites of Mg accumulation in the bone, which are around blood vessels, lacunae and the bone marrow. Only at the highest degradation rates was Mg found at the implant-bone interface. The Mg inclusion into the bone matrix appeared to be non-permanent as the Mg-level decreased after completed implant degradation. μSAXS and μXRD showed that Mg influences the hydroxyl apatite (HAP) crystallite structure, because markedly shorter and thinner HAP crystallites were found in zones of high Mg concentration. These zones also exhibited a contraction of the HAP lattice and lower crystalline order., (Copyright © 2015 Elsevier Ltd. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
45. Crystal-Like Rearrangements of Icosahedra in Simulated Copper-Zirconium Metallic Glasses and their Effect on Mechanical Properties.
- Author
-
Zemp J, Celino M, Schönfeld B, and Löffler JF
- Abstract
Indications of the Cu2Zr Laves phase are observed in MD simulations of amorphous Cu64Zr36 upon isothermal holding just above the glass transition temperature. The structural evolution towards Cu2Zr is accompanied by an increase in the fraction of Cu-centered icosahedra, which demonstrates that a large icosahedral fraction does not just indicate structural relaxation. The crystal-like regions generate an increase in strength and Young's modulus, and a stronger localized shear band. A universal relation between the fraction of full icosahedra and their interconnectivity is found, and both can be modified simultaneously via changes of temperature or strain.
- Published
- 2015
- Full Text
- View/download PDF
46. Enhancement of the intrinsic fluorescence of adenine using aluminum nanoparticle arrays.
- Author
-
Jha SK, Mojarad N, Agio M, Löffler JF, and Ekinci Y
- Abstract
This study demonstrates the metal-enhanced fluorescence of adenine using aluminum nanoparticle arrays in the deep UV range. It achieves the reproducible intensity enhancement of intrinsic fluorescence up to 80 on well-defined aluminum nanoparticle arrays at 257 nm excitation. In addition to a high signal enhancement, a strong modification of the fluorescence emission spectrum of adenine is observed. This study illustrates that the label-free detection of DNA bases and proteins that have low intrinsic fluorescence and absorption bands in the deep UV range can be facilitated using aluminum nanostructures.
- Published
- 2015
- Full Text
- View/download PDF
47. Influence of trace impurities on the in vitro and in vivo degradation of biodegradable Mg-5Zn-0.3Ca alloys.
- Author
-
Hofstetter J, Martinelli E, Pogatscher S, Schmutz P, Povoden-Karadeniz E, Weinberg AM, Uggowitzer PJ, and Löffler JF
- Subjects
- Animals, Body Fluids chemistry, Corrosion, Electric Conductivity, Equipment Contamination, Male, Materials Testing, Rats, Rats, Sprague-Dawley, Absorbable Implants, Alloys chemistry, Bone Nails, Calcium chemistry, Magnesium chemistry, Zinc chemistry
- Abstract
The hydrogen evolution method and animal experiments were deployed to investigate the effect of trace impurity elements on the degradation behavior of high-strength Mg alloys of type ZX50 (Mg-5Zn-0.3Ca). It is shown that trace impurity elements increase the degradation rate, predominantly in the initial period of the tests, and also increase the material's susceptibility to localized corrosion attack. These effects are explained on the basis of the corrosion potential of the intermetallic phases present in the alloys. The Zn-rich phases present in ZX50 are nobler than the Mg matrix, and thus act as cathodic sites. The impurity elements Fe and Mn in the alloy of conventional purity are incorporated in these Zn-rich intermetallic phases and therefore increase their cathodic efficiency. A design rule for circumventing the formation of noble intermetallic particles and thus avoiding galvanically accelerated dissolution of the Mg matrix is proposed., (Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
48. Towards deep-UV surface-enhanced resonance Raman spectroscopy of explosives: ultrasensitive, real-time and reproducible detection of TNT.
- Author
-
Jha SK, Ekinci Y, Agio M, and Löffler JF
- Abstract
We report ultrasensitive and label-free detection of 2,4,6-trinitrotoluene (TNT) deposited by drop coating using deep-ultraviolet surface-enhanced resonance Raman scattering (DUV-SERRS). Well-defined aluminum nanoparticle arrays as the SERRS substrate at 257 nm excitation wavelength enabled highly reproducible and real-time detection of TNT down to the detection limit of the attogram level in quantity. This extreme sensitivity can be further improved by optimization of the nanostructured substrates. DUV-SERRS promises to have a large impact on public safety and security, as it can be readily extended to other explosives and hazardous materials.
- Published
- 2015
- Full Text
- View/download PDF
49. Effective temperature dynamics of shear bands in metallic glasses.
- Author
-
Daub EG, Klaumünzer D, and Löffler JF
- Abstract
We study the plastic deformation of bulk metallic glasses with shear transformation zone (STZ) theory, a physical model for plasticity in amorphous systems, and compare it with experimental data. In STZ theory, plastic deformation occurs when localized regions rearrange due to applied stress and the density of these regions is determined by a dynamically evolving effective disorder temperature. We compare the predictions of STZ theory to experiments that explore the low-temperature deformation of Zr-based bulk metallic glasses via shear bands at various thermal temperatures and strain rates. By following the evolution of effective temperature with time, strain rate, and temperature through a series of approximate and numerical solutions to the STZ equations, we successfully model a suite of experimentally observed phenomena, including shear-band aging as apparent from slide-hold-slide tests, a temperature-dependent steady-state flow stress, and a strain-rate- and temperature-dependent transition from stick-slip (serrated flow) to steady-sliding (nonserrated flow). We find that STZ theory quantitatively matches the observed experimental data and provides a framework for relating the experimentally measured energy scales to different types of atomic rearrangements.
- Published
- 2014
- Full Text
- View/download PDF
50. Biodegradable Fe-based alloys for use in osteosynthesis: outcome of an in vivo study after 52 weeks.
- Author
-
Kraus T, Moszner F, Fischerauer S, Fiedler M, Martinelli E, Eichler J, Witte F, Willbold E, Schinhammer M, Meischel M, Uggowitzer PJ, Löffler JF, and Weinberg A
- Subjects
- Animals, Male, Microscopy, Electron, Scanning, Rats, Rats, Sprague-Dawley, Alloys, Biocompatible Materials, Iron chemistry, Osteogenesis
- Abstract
This study investigates the degradation performance of three Fe-based materials in a growing rat skeleton over a period of 1 year. Pins of pure Fe and two Fe-based alloys (Fe-10 Mn-1Pd and Fe-21 Mn-0.7C-1Pd, in wt.%) were implanted transcortically into the femur of 38 Sprague-Dawley rats and inspected after 4, 12, 24 and 52 weeks. The assessment was performed by ex vivo microfocus computed tomography, weight-loss determination, surface analysis of the explanted pins and histological examination. The materials investigated showed signs of degradation; however, the degradation proceeded rather slowly and no significant differences between the materials were detected. We discuss these unexpected findings on the basis of fundamental considerations regarding iron corrosion. Dense layers of degradation products were formed on the implants' surfaces, and act as barriers against oxygen transport. For the degradation of iron, however, the presence of oxygen is an indispensable prerequisite. Its availability is generally a critical factor in bony tissue and rather limited there, i.e. in the vicinity of our implants. Because of the relatively slow degradation of both pure Fe and the Fe-based alloys, their suitability for bulk temporary implants such as those in osteosynthesis applications appears questionable., (Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.