Back to Search Start Over

Electron-band theory inspired design of magnesium-precious metal bulk metallic glasses with high thermal stability and extended ductility.

Authors :
Laws KJ
Shamlaye KF
Granata D
Koloadin LS
Löffler JF
Source :
Scientific reports [Sci Rep] 2017 Jun 13; Vol. 7 (1), pp. 3400. Date of Electronic Publication: 2017 Jun 13.
Publication Year :
2017

Abstract

Magnesium-based bulk metallic glasses (BMGs) exhibit high specific strengths and excellent glass-forming ability compared to other metallic systems, making them suitable candidates for next-generation materials. However, current Mg-based BMGs tend to exhibit low thermal stability and are prone to structural relaxation and brittle failure. This study presents a range of new magnesium-precious metal-based BMGs from the ternary Mg-Ag-Ca, Mg-Ag-Yb, Mg-Pd-Ca and Mg-Pd-Yb alloy systems with Mg content greater than 67 at.%. These alloys were designed for high ductility by utilising atomic bond-band theory and a topological efficient atomic packing model. BMGs from the Mg-Pd-Ca alloy system exhibit high glass-forming ability with critical casting sizes of up to 3 mm in diameter, the highest glass transition temperatures (>200 °C) of any reported Mg-based BMG to date, and sustained compressive ductility. Alloys from the Mg-Pd-Yb family exhibit critical casting sizes of up to 4 mm in diameter, and the highest compressive plastic (1.59%) and total (3.78%) strain to failure of any so far reported Mg-based glass. The methods and theoretical approaches presented here demonstrate a significant step forward in the ongoing development of this extraordinary class of materials.

Details

Language :
English
ISSN :
2045-2322
Volume :
7
Issue :
1
Database :
MEDLINE
Journal :
Scientific reports
Publication Type :
Academic Journal
Accession number :
28611455
Full Text :
https://doi.org/10.1038/s41598-017-03643-7