610 results on '"Krammer, F"'
Search Results
2. P2.28-03 Symptomatic vs. Asymptomatic SARS-CoV-2 Infection Rates in Lung Cancer: Longitudinal Nucleocapsid Antibody Analysis
- Author
-
Rodilla, A., primary, Valanparambil, R.M., additional, Mack, P.C., additional, Hsu, C.-Y., additional, Tavolacci, S., additional, Carreño, J.M., additional, Brody, R., additional, Moore, A., additional, King, J.C., additional, Gomez, J.E., additional, Rohs, N., additional, Rolfo, C.D., additional, Gerber, D.E., additional, Minna, J.D., additional, Bunn, P.A., additional, García-Sastre, A., additional, Krammer, F., additional, Ramalingam, S., additional, Shyr, Y., additional, Ahmed, R., additional, and Hirsch, F.R., additional
- Published
- 2023
- Full Text
- View/download PDF
3. Universal influenza virus vaccines and therapeutic antibodies
- Author
-
Nachbagauer, R. and Krammer, F.
- Published
- 2017
- Full Text
- View/download PDF
4. Broad spectrum SARS-CoV-2-specific immunity in hospitalized First Nations peoples recovering from COVID-19
- Author
-
Zhang, W, Clemens, EB, Kedzierski, L, Chua, BY, Mayo, M, Lonzi, C, Hinchcliff, A, Rigas, V, Middleton, BF, Binks, P, Rowntree, LC, Allen, LF, Tan, H-X, Petersen, J, Chaurasia, P, Krammer, F, Wheatley, AK, Kent, SJ, Rossjohn, J, Miller, A, Lynar, S, Nelson, J, Nguyen, THO, Davies, J, Kedzierska, K, Zhang, W, Clemens, EB, Kedzierski, L, Chua, BY, Mayo, M, Lonzi, C, Hinchcliff, A, Rigas, V, Middleton, BF, Binks, P, Rowntree, LC, Allen, LF, Tan, H-X, Petersen, J, Chaurasia, P, Krammer, F, Wheatley, AK, Kent, SJ, Rossjohn, J, Miller, A, Lynar, S, Nelson, J, Nguyen, THO, Davies, J, and Kedzierska, K
- Abstract
Indigenous peoples globally are at increased risk of COVID-19-associated morbidity and mortality. However, data that describe immune responses to SARS-CoV-2 infection in Indigenous populations are lacking. We evaluated immune responses in Australian First Nations peoples hospitalized with COVID-19. Our work comprehensively mapped out inflammatory, humoral and adaptive immune responses following SARS-CoV-2 infection. Patients were recruited early following the lifting of strict public health measures in the Northern Territory, Australia, between November 2021 and May 2022. Australian First Nations peoples recovering from COVID-19 showed increased levels of MCP-1 and IL-8 cytokines, IgG-antibodies against Delta-RBD and memory SARS-CoV-2-specific T cell responses prior to hospital discharge in comparison with hospital admission, with resolution of hyperactivated HLA-DR+ CD38+ T cells. SARS-CoV-2 infection elicited coordinated ASC, Tfh and CD8+ T cell responses in concert with CD4+ T cell responses. Delta and Omicron RBD-IgG, as well as Ancestral N-IgG antibodies, strongly correlated with Ancestral RBD-IgG antibodies and Spike-specific memory B cells. We provide evidence of broad and robust immune responses following SARS-CoV-2 infection in Indigenous peoples, resembling those of non-Indigenous COVID-19 hospitalized patients.
- Published
- 2023
5. Robust SARS-CoV-2 T cell responses with common TCRab motifs toward COVID-19 vaccines in patients with hematological malignancy impacting B cells
- Author
-
Nguyen, THO, Rowntree, LC, Allen, LF, Chua, BY, Kedzierski, L, Lim, C, Lasica, M, Tennakoon, GS, Saunders, NR, Crane, M, Chee, L, Seymour, JF, Anderson, MA, Whitechurch, A, Clemens, EB, Zhang, W, Chang, SY, Habel, JR, Jia, X, McQuilten, HA, Minervina, AA, Pogorelyy, MV, Chaurasia, P, Petersen, J, Menon, T, Hensen, L, Neil, JA, Mordant, FL, Tan, H-X, Cabug, AF, Wheatley, AK, Kent, SJ, Subbarao, K, Karapanagiotidis, T, Huang, H, Vo, LK, Cain, NL, Nicholson, S, Krammer, F, Gibney, G, James, F, Trevillyan, JM, Trubiano, JA, Mitchell, J, Christensen, B, Bond, KA, Williamson, DA, Rossjohn, J, Crawford, JC, Thomas, PG, Thursky, KA, Slavin, MA, Tam, CS, Teh, BW, Kedzierska, K, Nguyen, THO, Rowntree, LC, Allen, LF, Chua, BY, Kedzierski, L, Lim, C, Lasica, M, Tennakoon, GS, Saunders, NR, Crane, M, Chee, L, Seymour, JF, Anderson, MA, Whitechurch, A, Clemens, EB, Zhang, W, Chang, SY, Habel, JR, Jia, X, McQuilten, HA, Minervina, AA, Pogorelyy, MV, Chaurasia, P, Petersen, J, Menon, T, Hensen, L, Neil, JA, Mordant, FL, Tan, H-X, Cabug, AF, Wheatley, AK, Kent, SJ, Subbarao, K, Karapanagiotidis, T, Huang, H, Vo, LK, Cain, NL, Nicholson, S, Krammer, F, Gibney, G, James, F, Trevillyan, JM, Trubiano, JA, Mitchell, J, Christensen, B, Bond, KA, Williamson, DA, Rossjohn, J, Crawford, JC, Thomas, PG, Thursky, KA, Slavin, MA, Tam, CS, Teh, BW, and Kedzierska, K
- Abstract
Immunocompromised hematology patients are vulnerable to severe COVID-19 and respond poorly to vaccination. Relative deficits in immunity are, however, unclear, especially after 3 vaccine doses. We evaluated immune responses in hematology patients across three COVID-19 vaccination doses. Seropositivity was low after a first dose of BNT162b2 and ChAdOx1 (∼26%), increased to 59%-75% after a second dose, and increased to 85% after a third dose. While prototypical antibody-secreting cells (ASCs) and T follicular helper (Tfh) cell responses were elicited in healthy participants, hematology patients showed prolonged ASCs and skewed Tfh2/17 responses. Importantly, vaccine-induced expansions of spike-specific and peptide-HLA tetramer-specific CD4+/CD8+ T cells, together with their T cell receptor (TCR) repertoires, were robust in hematology patients, irrespective of B cell numbers, and comparable to healthy participants. Vaccinated patients with breakthrough infections developed higher antibody responses, while T cell responses were comparable to healthy groups. COVID-19 vaccination induces robust T cell immunity in hematology patients of varying diseases and treatments irrespective of B cell numbers and antibody response.
- Published
- 2023
6. Robust and prototypical immune responses toward COVID-19 vaccine in First Nations peoples are impacted by comorbidities
- Author
-
Zhang, W, Kedzierski, L, Chua, BY, Mayo, M, Lonzi, C, Rigas, V, Middleton, BF, McQuilten, HA, Rowntree, LC, Allen, LF, Purcell, RA, Tan, H-X, Petersen, J, Chaurasia, P, Mordant, F, Pogorelyy, MV, Minervina, AA, Crawford, JC, Perkins, GB, Zhang, E, Gras, S, Clemens, EB, Juno, JA, Audsley, J, Khoury, DS, Holmes, NE, Thevarajan, I, Subbarao, K, Krammer, F, Cheng, AC, Davenport, MP, Grubor-Bauk, B, Coates, PT, Christensen, B, Thomas, PG, Wheatley, AK, Kent, SJ, Rossjohn, J, Chung, AW, Boffa, J, Miller, A, Lynar, S, Nelson, J, Nguyen, THO, Davies, J, Kedzierska, K, Zhang, W, Kedzierski, L, Chua, BY, Mayo, M, Lonzi, C, Rigas, V, Middleton, BF, McQuilten, HA, Rowntree, LC, Allen, LF, Purcell, RA, Tan, H-X, Petersen, J, Chaurasia, P, Mordant, F, Pogorelyy, MV, Minervina, AA, Crawford, JC, Perkins, GB, Zhang, E, Gras, S, Clemens, EB, Juno, JA, Audsley, J, Khoury, DS, Holmes, NE, Thevarajan, I, Subbarao, K, Krammer, F, Cheng, AC, Davenport, MP, Grubor-Bauk, B, Coates, PT, Christensen, B, Thomas, PG, Wheatley, AK, Kent, SJ, Rossjohn, J, Chung, AW, Boffa, J, Miller, A, Lynar, S, Nelson, J, Nguyen, THO, Davies, J, and Kedzierska, K
- Abstract
High-risk groups, including Indigenous people, are at risk of severe COVID-19. Here we found that Australian First Nations peoples elicit effective immune responses to COVID-19 BNT162b2 vaccination, including neutralizing antibodies, receptor-binding domain (RBD) antibodies, SARS-CoV-2 spike-specific B cells, and CD4+ and CD8+ T cells. In First Nations participants, RBD IgG antibody titers were correlated with body mass index and negatively correlated with age. Reduced RBD antibodies, spike-specific B cells and follicular helper T cells were found in vaccinated participants with chronic conditions (diabetes, renal disease) and were strongly associated with altered glycosylation of IgG and increased interleukin-18 levels in the plasma. These immune perturbations were also found in non-Indigenous people with comorbidities, indicating that they were related to comorbidities rather than ethnicity. However, our study is of a great importance to First Nations peoples who have disproportionate rates of chronic comorbidities and provides evidence of robust immune responses after COVID-19 vaccination in Indigenous people.
- Published
- 2023
7. OA06.03 Serological Response to SARS-CoV-2 Vaccination in Patients Lung Cancer: A Mount Sinai-Led Prospective Matched Controlled Study
- Author
-
Mack, P.C., primary, Gomez, J.C., additional, Rodilla, A., additional, Carreño, J.M., additional, Hsu, C.-Y., additional, Rolfo, C.D., additional, Meshulami, N., additional, Moore, A., additional, Brody, R., additional, King, J.C., additional, Treatman, J., additional, Lee, S., additional, Raskin, A., additional, Srivastava, K., additional, Gleason, C.R., additional, Tcheou, J., additional, Bielak, D., additional, Acharya, R., additional, Gerber, D.E., additional, Rohs, N., additional, Henschke, C.I., additional, Yankelevitz, D.F., additional, Simon, V., additional, Minna, J.D., additional, Bunn, P.A., additional, García- Sastre, A., additional, Krammer, F., additional, Shyr, Y., additional, and Hirsch, F.R., additional
- Published
- 2022
- Full Text
- View/download PDF
8. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19
- Author
-
Zhang Q., Liu Z., Moncada-Velez M., Chen J., Ogishi M., Bigio B., Yang R., Arias A. A., Zhou Q., Han J. E., Ugurbil A. C., Zhang P., Rapaport F., Li J., Spaan A. N., Boisson B., Boisson-Dupuis S., Bustamante J., Puel A., Ciancanelli M. J., Zhang S. -Y., Beziat V., Jouanguy E., Abel L., Cobat A., Casanova J. -L., Bastard P., Korol C., Rosain J., Philippot Q., Chbihi M., Lorenzo L., Bizien L., Neehus A. -L., Kerner G., Seeleuthner Y., Manry J., Le Voyer T., Le Pen J., Schneider W. M., Razooky B. S., Hoffmann H. -H., Michailidis E., Rice C. M., Sabli I. K. D., Hodeib S., Sancho-Shimizu V., Bilguvar K., Ye J., Maniatis T., Bolze A., Zhang Y., Notarangelo L. D., Su H. C., Onodi F., Korniotis S., Karpf L., Soumelis V., Bonnet-Madin L., Amara A., Dorgham K., Gorochov G., Smith N., Duffy D., Moens L., Meyts I., Meade P., Garcia-Sastre A., Krammer F., Corneau A., Masson C., Schmitt Y., Schluter A., Pujol A., Khan T., Marr N., Fellay J., Roussel L., Vinh D. C., Shahrooei M., Alosaimi M. F., Alsohime F., Hasanato R., Mansouri D., Al-Saud H., Almourfi F., Al-Mulla F., Al-Muhsen S. Z., Al Turki S., van de Beek D., Biondi A., Bettini L. R., D'Angio M., Bonfanti P., Imberti L., Sottini A., Paghera S., Quiros-Roldan E., Rossi C., Oler A. J., Tompkins M. F., Alba C., Dalgard C. L., Vandernoot I., Smits G., Goffard J. -C., Migeotte I., Haerynck F., Soler-Palacin P., Martin-Nalda A., Colobran R., Morange P. -E., Keles S., Colkesen F., Ozcelik T., Yasar K. K., Senoglu S., Karabela S. N., Rodriguez-Gallego C., Novelli G., Hraiech S., Tandjaoui-Lambiotte Y., Duval X., Laouenan C., Snow A. L., Milner J. D., Mogensen T. H., Nussenzweig M., Lifton R. P., Foti G., Bellani G., Citerio G., Contro E., Pesci A., Valsecchi M. G., Cazzaniga M., Abad J., Blanco I., Rodrigo C., Aguilera-Albesa S., Akcan O. M., Darazam I. A., Aldave J. C., Ramos M. A., Nadji S. A., Alkan G., Allardet-Servent J., Allende L. M., Alsina L., Alyanakian M. -A., Amador-Borrero B., Mouly S., Sene D., Amoura Z., Mathian A., Antoli A., Blanch G. R., Riera J. S., Moreno X. S., Arslan S., Assant S., Auguet T., Azot A., Bajolle F., Levy R., Oualha M., Baldolli A., Ballester M., Feldman H. B., Barrou B., Beurton A., Bilbao A., Blanchard-Rohner G., Blandinieres A., Rivet N., Blazquez-Gamero D., Bloomfield M., Bolivar-Prados M., Clave P., Borie R., Bosteels C., Lambrecht B. N., van Braeckel E., Bousfiha A. A., Bouvattier C., Vincent A., Boyarchuk O., Bueno M. R. P., Castro M. V., Matos L. R. B., Zatz M., Agra J. J. C., Calimli S., Capra R., Carrabba M., Fabio G., Casasnovas C., Velez-Santamaria V., Caseris M., Falck A., Poncelet G., Castelle M., Castelli F., de Vera M. C., Catherinot E., Chalumeau M., Toubiana J., Charbit B., Li Z., Pellegrini S., Cheng M. P., Clotet B., Codina A., Comarmond C., Dalmau D., Darley D. R., Dauby N., Dauger S., Le Bourgeois F., Levy M., de Pontual L., Dehban A., Delplancq G., Demoule A., Diehl J. -L., Dobbelaere S., Durand S., Mircher C., Rebillat A. -S., Vilaire M. E., Eldars W., Elgamal M., Elnagdy M. H., Emiroglu M., Erdeniz E. H., Aytekin S. E., Euvrard R., Evcen R., Faivre L., Fartoukh M., Faure M., Arquero M. F., Flores C., Francois B., Fumado V., Fusco F., Ursini M. V., Solis B. G., de Diego R. P., van Den Rym A. M., Gaussem P., Gil-Herrera J., Gilardin L., Alarcon M. G., Girona-Alarcon M., Gok F., Yosunkaya A., Gonzalez-Montelongo R., Inigo-Campos A., Lorenzo-Salazar J. M., Munoz-Barrera A., Guerder A., Gul Y., Guner S. N., Gut M., Hadjadj J., Halwani R., Hammarstrom L., Hatipoglu N., Hernandez-Brito E., Heijmans C., Holanda-Pena M. S., Horcajada J. P., Hoste L., Hoste E., Humbert L., Mordacq C., Thumerelle C., Vuotto F., Iglesias A. D., Jamme M., Arranz M. J., Jordan I., Jorens P., Kanat F., Kapakli H., Kara I., Karbuz A., Demirkol Y. K., Klocperk A., Krol Z. J., Kuentz P., Kwan Y. W. M., Lagier J. -C., Lau Y. -L., Leung D., Leo Y. -S., Young B. E., Lopez R. L., Levin M., Linglart A., Loeys B., Louapre C., Lubetzki C., Luyt C. -E., Lye D. C., Marjani M., Pereira J. M., Martin A., Pueyo D. M., Martinez-Picado J., Marzana I., Matthews G. V., Mayaux J., Parizot C., Quentric P., Mege J. -L., Raoult D., Melki I., Meritet J. -F., Metin O., Mezidi M., Taccone F., Millereux M., Mirault T., Mirsaeidi M., Melian A. M., Martinez A. M., Morange P., Morelle G., Naesens L., Nafati C., Neves J. F., Ng L. F. P., Medina Y. N., Cuadros E. N., Gonzalo Ocejo-Vinyals J., Orbak Z., Pan-Hammarstrom Q., Pascreau T., Paz-Artal E., Philippe A., Planas-Serra L., Ploin D., Viel S., Poissy J., Pouletty M., Reisli I., Ricart P., Richard J. -C., Riviere J. G., Rodriguez-Palmero A., Romero C. S., Rothenbuhler A., Rozenberg F., del Prado M. Y. R., Sanchez O., Sanchez-Ramon S., Schmidt M., Schweitzer C. E., Scolari F., Sediva A., Seijo L. M., Seppanen M. R. J., Ilovich A. S., Slabbynck H., Smadja D. M., Sobh A., Sole-Violan J., Soler C., Stepanovskiy Y., Stoclin A., Taupin J. -L., Tavernier S. J., Terrier B., Tomasoni G., Alvarez J. T., Trouillet-Assant S., Troya J., Tucci A., Uzunhan Y., Vabres P., Valencia-Ramos J., van de Velde S., van Praet J., Vatansev H., Vilain C., Voiriot G., Yucel F., Zannad F., Belot A., Bole-Feysot C., Lyonnet S., Nitschke P., Pouliet A., Tores F., Zarhrate M., Andrejak C., Angoulvant F., Bachelet D., Bhavsar K., Bouadma L., Chair A., Couffignal C., Silveira C. D., Debray M. -P., Eloy P., Esposito-Farese M., Ettalhaoui N., Gault N., Ghosn J., Gorenne I., Hoffmann I., Kafif O., Kali S., Khalil A., Laribi S., Le M., Le Hingrat Q., Lescure F. -X., Lucet J. C., Mentre F., Mullaert J., Peiffer-Smadja N., Peytavin G., Roy C., Schneider M., Mohammed N. S., Tagherset L., Tardivon C., Tellier M. -C., Timsit J. -F., Trioux T., Tubiana S., Basmaci R., Behillil S., Beluze M., Benkerrou D., Dorival C., Meziane A., Teoule F., Bompart F., Bouscambert M., Gaymard A., Lina B., Rosa-Calatrava M., Terrier O., Caralp M., Cervantes-Gonzalez M., D'Ortenzio E., Puechal O., Semaille C., Coelho A., Diouf A., Hoctin A., Mambert M., Couffin-Cadiergues S., Deplanque D., Descamps D., Visseaux B., Desvallees M., Khan C., Diallo A., Mercier N., Paul C., Petrov-Sanchez V., Dubos F., Enouf V. V. E., Mouquet H., Esperou H., Jaafoura S., Papadopoulos A., Etienne M., Gigante T., Rossignol B., Guedj J., Le Nagard H., Lingas G., Neant N., Kaguelidou F., Levy Y., Wiedemann A., Levy-Marchal C., Malvy D., Noret M., Pages J., Picone O., Rossignol P., Tual C., Veislinger A., van der Werf S., Vanel N., Yazdanpanah Y., Alavoine L., Costa Y., Ecobichon J. -L., Frezouls W., Ilic-Habensus E., Leclercq A., Lehacaut J., Letrou S., Mandic M., Nouroudine M., Quintin C., Rexach J., Vignali V., Amat K. K. A., Enouf V., Bielicki J., Bruijning P., Burdet C., Caumes E., Charpentier C., Damond F., Coignard B., Delmas C., Roufai L., Dechanet A., Houhou N., Kikoine J., Manchon P., Piquard V., Postolache A., Terzian Z., Lebeaux D., Lucet J. -C., Meghadecha M., Motiejunaite J., Thy M., van Agtmael M., Bomers M., Chouchane O., Geerlings S., Goorhuis B., Grobusch M. P., Harris V., Hermans S. M., Hovius J. W., Nellen J., Peters E., van der Poll T., Prins J. M., Reijnders T., Schinkel M., Sigaloff K., Stijnis C. S., van der Valk M., van Vugt M., Joost Wiersinga W., Algera A. G., van Baarle F., Bos L., Botta M., de Bruin S., Bulle E., Elbers P., Fleuren L., Girbes A., Hagens L., Heunks L., Horn J., van Mourik N., Paulus F., Raasveld J., Schultz M. J., Smit M., Stilma W., Thoral P., Tsonas A., de Vries H., Bax D., Cloherty A., Beudel M., Brouwer M. C., Koning R., Bogaard H. J., de Brabander J., de Bree G., Bugiani M., Geerts B., Hollmann M. W., Preckel B., Veelo D., Geijtenbeek T., Hafkamp F., Hamann J., Hemke R., de Jong M. D., Schuurman A., Teunissen C., Vlaar A. P. J., Wouters D., Zwinderman A. H., Aiuti A., Muhsen S. A., Anderson M. S., Bogunovic D., Itan Y., Cirulli E., Barrett K. S., Washington N., Bondarenko A., Brodin P., Bryceson Y., Bustamante C. D., Butte M., Casari G., Chakravorty S., Christodoulou J., Le Mestre S., Condino-Neto A., Cooper M. A., David A., DeRisi J. L., Desai M., Drolet B. A., Espinosa S., Franco J. L., Gregersen P. K., Hagin D., Heath J., Henrickson S. E., Hsieh E., Imai K., Karamitros T., Kisand K., Ku C. -L., Ling Y., Lucas C. L., Marodi L., Milner J., Mironska K., Mogensen T., Morio T., Novelli A., O'Farrelly C., Okada S., Planas A. M., Prando C., Quintana-Murci L., Renia L., Renieri A., Sankaran V., Snow A., Tangye S., Turvey S., Uddin F., Uddin M. J., Vazquez S. E., von Bernuth H., Zawadzki P., Jing H., Tung W., Meguro K., Shaw E., Shafer S., Zheng L., Zhang Z., Kubo S., Chauvin S. D., Lenardo M., Luthers C. R., Bauman B. M., Lack J., Karlins E., Hupalo D. M., Rosenberger J., Sukumar G., Wilkerson M. D., Zhang X., Rockefeller University [New York], Imagine - Institut des maladies génétiques (IHU) (Imagine - U1163), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Paris (UP), CHU Necker - Enfants Malades [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Immunologie humaine, physiopathologie & immunothérapie (HIPI (UMR_S_976 / U976)), Génomes, biologie cellulaire et thérapeutiques (GenCellDi (UMR_S_944)), Collège de France (CdF (institution))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Centre d'Immunologie et de Maladies Infectieuses (CIMI), Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Immunologie Translationnelle - Translational Immunology lab, Institut Pasteur [Paris], Unité Mixte de Service Production et Analyse de données en Sciences de la vie et en Santé (PASS), Sorbonne Université (SU)-Institut National de la Santé et de la Recherche Médicale (INSERM), Cytométrie Pitié-Salpêtrière (PASS-CYPS), Sorbonne Université (SU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre recherche en CardioVasculaire et Nutrition = Center for CardioVascular and Nutrition research (C2VN), Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Infection, Anti-microbiens, Modélisation, Evolution (IAME (UMR_S_1137 / U1137)), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Paris (UP)-Université Sorbonne Paris Nord, CIC - CHU Bichat, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Investigation Clinique [Rennes] (CIC), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Hôpital Pontchaillou-Institut National de la Santé et de la Recherche Médicale (INSERM), R01AI088364, National Institutes of Health, Howard Hughes Medical Institute, UL1 TR001866, NIH Clinical and Translational Science Award, fast grant, Emergent Ventures, St. Giles Foundation, National Center for Advancing Translational Sciences, Rockefeller University, ANR-10-IAHU-01, Agence Nationale de la Recherche, UM1HG006504 and U24HG008956, National Human Genome Research Institute, ANR-10-LABX-62-IBEID, the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence, EQU201903007798, the French Foundation for Medical Research, Özçelik, Tayfun, Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité), Génomes, biologie cellulaire et thérapeutiques (GenCellDi (U944 / UMR7212)), Collège de France (CdF (institution))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Centre d'Immunologie et des Maladies Infectieuses (CIMI), Institut Pasteur [Paris] (IP), Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité)-Université Sorbonne Paris Nord, Université de Rennes (UR)-Hôpital Pontchaillou-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Modeling & analysis for medical imaging and Diagnosis (MYRIAD), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Virologie (CNRS-UMR3569), Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), ANR-10-IAHU-0001,Imagine,Institut Hospitalo-Universitaire Imagine(2010), ANR-17-CE15-0003,DENDRISEPSIS,Analyse systémique des cellules présentatrices d'antigène dans le sepsis humain(2017), ANR-20-COVI-0025,iCovid,Immunopathologie du COVID-19 à l'Assistance Publique Hôpitaux de Paris(2020), Zhang, Qian, Bastard, Paul, Le Pen, Jeremie, Moncada-Velez, Marcela, Ogishi, Masato, Sabli, Ira K. D., Hodeib, Stephanie, Korol, Cecilia, Bilguvar, Kaya, Bolze, Alexandre, Bigio, Benedetta, Yang, Rui, Arias, Andrés Augusto, Zhou, Qinhua, Chbihi, Marwa, Bonnet-Madin, Lucie, Dorgham, Karim, Smith, Nikaïa, Schneider, William M., Razooky, Brandon S., Hoffmann, Hans-Heinrich, Michailidis, Eleftherios, Han, Jin Eun, Lorenzo, Lazaro, Bizien, Lucy, Meade, Philip, Neehus, Anna-Lena, Ugurbil, Aileen Camille, Kerner, Gaspard, Zhang, Peng, Rapaport, Franck, Manry, Jérémy, Masson, Cecile, Schlüter, Agatha, Le Voyer, Tom, Khan, Taushif, Fellay, Jacques, Roussel, Lucie, Alosaimi, Mohammed F., Al-Mulla, Fahd, Almourfi, Feras, Alsohime, Fahad, Al Turki, Saeed, Hasanato, Rana, Beek, Diederik van der, Bettini, Laura Rachele, Bonfanti, Paolo, Oler, Andrew J., Tompkins, Miranda F., Alba, Camille, Smits, Guillaume, Soler-Palacín, Pere, Martin-Nalda, Andrea, Colobran, Roger, Çölkesen, Fatma, Yasar, Kadriye Kart, Senoglu, Sevtap, Karabela, Şemsi Nur, Rodríguez-Gallego, Carlos, Novelli, Giuseppe, Tandjaoui-Lambiotte, Yacine, Laouénan, Cédric, Zhang, Q, Bastard, P, Liu, Z, Le Pen, J, Moncada-Velez, M, Chen, J, Ogishi, M, Sabli, I, Hodeib, S, Korol, C, Rosain, J, Bilguvar, K, Ye, J, Bolze, A, Bigio, B, Yang, R, Arias, A, Zhou, Q, Zhang, Y, Onodi, F, Korniotis, S, Karpf, L, Philippot, Q, Chbihi, M, Bonnet-Madin, L, Dorgham, K, Smith, N, Schneider, W, Razooky, B, Hoffmann, H, Michailidis, E, Moens, L, Han, J, Lorenzo, L, Bizien, L, Meade, P, Neehus, A, Ugurbil, A, Corneau, A, Kerner, G, Zhang, P, Rapaport, F, Seeleuthner, Y, Manry, J, Masson, C, Schmitt, Y, Schlüter, A, Le Voyer, T, Khan, T, Li, J, Fellay, J, Roussel, L, Shahrooei, M, Alosaimi, M, Mansouri, D, Al-Saud, H, Al-Mulla, F, Almourfi, F, Al-Muhsen, S, Alsohime, F, Al Turki, S, Hasanato, R, van de Beek, D, Biondi, A, Bettini, L, D'Angio, M, Bonfanti, P, Imberti, L, Sottini, A, Paghera, S, Quiros-Roldan, E, Rossi, C, Oler, A, Tompkins, M, Alba, C, Vandernoot, I, Goffard, J, Smits, G, Migeotte, I, Haerynck, F, Soler-Palacin, P, Martin-Nalda, A, Colobran, R, Morange, P, Keles, S, Çölkesen, F, Ozcelik, T, Yasar, K, Senoglu, S, Karabela, Ş, Gallego, C, Novelli, G, Hraiech, S, Tandjaoui-Lambiotte, Y, Duval, X, Laouénan, C, Snow, A, Dalgard, C, Milner, J, Vinh, D, Mogensen, T, Marr, N, Spaan, A, Boisson, B, Boisson-Dupuis, S, Bustamante, J, Puel, A, Ciancanelli, M, Meyts, I, Maniatis, T, Soumelis, V, Amara, A, Nussenzweig, M, García-Sastre, A, Krammer, F, Pujol, A, Duffy, D, Lifton, R, Zhang, S, Gorochov, G, Béziat, V, Jouanguy, E, Sancho-Shimizu, V, Rice, C, Abel, L, Notarangelo, L, Cobat, A, Su, H, Casanova, J, Pesci, A, Neurology, AII - Infectious diseases, ANS - Neuroinfection & -inflammation, Infectious diseases, ACS - Pulmonary hypertension & thrombosis, Intensive Care Medicine, ACS - Heart failure & arrhythmias, Anesthesiology, ACS - Diabetes & metabolism, ACS - Microcirculation, UKRI Future Leader's Fellowship, Internal medicine, Pulmonary medicine, Intensive care medicine, Pathology, Medical Microbiology and Infection Prevention, Amsterdam Reproduction & Development (AR&D), Amsterdam Neuroscience - Neuroinfection & -inflammation, Laboratory Medicine, APH - Quality of Care, COVID-STORM Clinicians, COVID Clinicians, Imagine COVID Group, French COVID Cohort Study Group, CoV-Contact Cohort, Amsterdam UMC Covid-19 Biobank, COVID Human Genetic Effort, NIAID-USUHS/TAGC COVID Immunity Group, Foti, G., Bellani, G., Citerio, G., Contro, E., Pesci, A., Valsecchi, M.G., Cazzaniga, M., Abad, J., Aguilera-Albesa, S., Akcan, O.M., Darazam, I.A., Aldave, J.C., Ramos, M.A., Nadji, S.A., Alkan, G., Allardet-Servent, J., Allende, L.M., Alsina, L., Alyanakian, M.A., Amador-Borrero, B., Amoura, Z., Antolí, A., Arslan, S., Assant, S., Auguet, T., Azot, A., Bajolle, F., Baldolli, A., Ballester, M., Feldman, H.B., Barrou, B., Beurton, A., Bilbao, A., Blanchard-Rohner, G., Blanco, I., Blandinières, A., Blazquez-Gamero, D., Bloomfield, M., Bolivar-Prados, M., Borie, R., Bosteels, C., Bousfiha, A.A., Bouvattier, C., Boyarchuk, O., Bueno, MRP, Bustamante, J., Cáceres Agra, J.J., Calimli, S., Capra, R., Carrabba, M., Casasnovas, C., Caseris, M., Castelle, M., Castelli, F., de Vera, M.C., Castro, M.V., Catherinot, E., Chalumeau, M., Charbit, B., Cheng, M.P., Clavé, P., Clotet, B., Codina, A., Colkesen, F., Çölkesen, F., Colobran, R., Comarmond, C., Dalmau, D., Darley, D.R., Dauby, N., Dauger, S., de Pontual, L., Dehban, A., Delplancq, G., Demoule, A., Diehl, J.L., Dobbelaere, S., Durand, S., Eldars, W., Elgamal, M., Elnagdy, M.H., Emiroglu, M., Erdeniz, E.H., Aytekin, S.E., Euvrard, R., Evcen, R., Fabio, G., Faivre, L., Falck, A., Fartoukh, M., Faure, M., Arquero, M.F., Flores, C., Francois, B., Fumadó, V., Fusco, F., Solis, B.G., Gaussem, P., Gil-Herrera, J., Gilardin, L., Alarcon, M.G., Girona-Alarcón, M., Goffard, J.C., Gok, F., González-Montelongo, R., Guerder, A., Gul, Y., Guner, S.N., Gut, M., Hadjadj, J., Haerynck, F., Halwani, R., Hammarström, L., Hatipoglu, N., Hernandez-Brito, E., Heijmans, C., Holanda-Peña, M.S., Horcajada, J.P., Hoste, L., Hoste, E., Hraiech, S., Humbert, L., Iglesias, A.D., Íñigo-Campos, A., Jamme, M., Arranz, M.J., Jordan, I., Jorens, P., Kanat, F., Kapakli, H., Kara, I., Karbuz, A., Yasar, K.K., Keles, S., Demirkol, Y.K., Klocperk, A., Król, Z.J., Kuentz, P., Kwan, YWM, Lagier, J.C., Lambrecht, B.N., Lau, Y.L., Le Bourgeois, F., Leo, Y.S., Lopez, R.L., Leung, D., Levin, M., Levy, M., Lévy, R., Li, Z., Linglart, A., Loeys, B., Lorenzo-Salazar, J.M., Louapre, C., Lubetzki, C., Luyt, C.E., Lye, D.C., Mansouri, D., Marjani, M., Pereira, J.M., Martin, A., Pueyo, D.M., Martinez-Picado, J., Marzana, I., Mathian, A., Matos, LRB, Matthews, G.V., Mayaux, J., Mège, J.L., Melki, I., Meritet, J.F., Metin, O., Meyts, I., Mezidi, M., Migeotte, I., Millereux, M., Mirault, T., Mircher, C., Mirsaeidi, M., Melián, A.M., Martinez, A.M., Morange, P., Mordacq, C., Morelle, G., Mouly, S., Muñoz-Barrera, A., Naesens, L., Nafati, C., Neves, J.F., Ng, LFP, Medina, Y.N., Cuadros, E.N., Ocejo-Vinyals, J.G., Orbak, Z., Oualha, M., Özçelik, T., Pan-Hammarström, Q., Parizot, C., Pascreau, T., Paz-Artal, E., Pellegrini, S., de Diego, R.P., Philippe, A., Philippot, Q., Planas-Serra, L., Ploin, D., Poissy, J., Poncelet, G., Pouletty, M., Quentric, P., Raoult, D., Rebillat, A.S., Reisli, I., Ricart, P., Richard, J.C., Rivet, N., Rivière, J.G., Blanch, G.R., Rodrigo, C., Rodriguez-Gallego, C., Rodríguez-Palmero, A., Romero, C.S., Rothenbuhler, A., Rozenberg, F., Ruiz Del Prado, M.Y., Riera, J.S., Sanchez, O., Sánchez-Ramón, S., Schluter, A., Schmidt, M., Schweitzer, C.E., Scolari, F., Sediva, A., Seijo, L.M., Sene, D., Senoglu, S., Seppänen, MRJ, Ilovich, A.S., Shahrooei, M., Slabbynck, H., Smadja, D.M., Sobh, A., Moreno, X.S., Solé-Violán, J., Soler, C., Soler-Palacín, P., Stepanovskiy, Y., Stoclin, A., Taccone, F., Tandjaoui-Lambiotte, Y., Taupin, J.L., Tavernier, S.J., Terrier, B., Thumerelle, C., Tomasoni, G., Toubiana, J., Alvarez, J.T., Trouillet-Assant, S., Troya, J., Tucci, A., Ursini, M.V., Uzunhan, Y., Vabres, P., Valencia-Ramos, J., Van Braeckel, E., Van de Velde, S., Van Den Rym, A.M., Van Praet, J., Vandernoot, I., Vatansev, H., Vélez-Santamaria, V., Viel, S., Vilain, C., Vilaire, M.E., Vincent, A., Voiriot, G., Vuotto, F., Yosunkaya, A., Young, B.E., Yucel, F., Zannad, F., Zatz, M., Belot, A., Bole-Feysot, C., Lyonnet, S., Masson, C., Nitschke, P., Pouliet, A., Schmitt, Y., Tores, F., Zarhrate, M., Abel, L., Andrejak, C., Angoulvant, F., Bachelet, D., Basmaci, R., Behillil, S., Beluze, M., Benkerrou, D., Bhavsar, K., Bompart, F., Bouadma, L., Bouscambert, M., Caralp, M., Cervantes-Gonzalez, M., Chair, A., Coelho, A., Couffignal, C., Couffin-Cadiergues, S., D'Ortenzio, E., Da Silveira, C., Debray, M.P., Deplanque, D., Descamps, D., Desvallées, M., Diallo, A., Diouf, A., Dorival, C., Dubos, F., Duval, X., Eloy, P., Enouf, V.V., Esperou, H., Esposito-Farese, M., Etienne, M., Ettalhaoui, N., Gault, N., Gaymard, A., Ghosn, J., Gigante, T., Gorenne, I., Guedj, J., Hoctin, A., Hoffmann, I., Jaafoura, S., Kafif, O., Kaguelidou, F., Kali, S., Khalil, A., Khan, C., Laouénan, C., Laribi, S., Le, M., Le Hingrat, Q., Le Mestre, S., Le Nagard, H., Lescure, F.X., Lévy, Y., Levy-Marchal, C., Lina, B., Lingas, G., Lucet, J.C., Malvy, D., Mambert, M., Mentré, F., Mercier, N., Meziane, A., Mouquet, H., Mullaert, J., Neant, N., Noret, M., Pages, J., Papadopoulos, A., Paul, C., Peiffer-Smadja, N., Petrov-Sanchez, V., Peytavin, G., Picone, O., Puéchal, O., Rosa-Calatrava, M., Rossignol, B., Rossignol, P., Roy, C., Schneider, M., Semaille, C., Mohammed, N.S., Tagherset, L., Tardivon, C., Tellier, M.C., Téoulé, F., Terrier, O., Timsit, J.F., Trioux, T., Tual, C., Tubiana, S., van der Werf, S., Vanel, N., Veislinger, A., Visseaux, B., Wiedemann, A., Yazdanpanah, Y., Alavoine, L., Amat, KKA, Bielicki, J., Bruijning, P., Burdet, C., Caumes, E., Charpentier, C., Coignard, B., Costa, Y., Damond, F., Dechanet, A., Delmas, C., Ecobichon, J.L., Enouf, V., Espérou, H., Frezouls, W., Houhou, N., Ilic-Habensus, E., Kikoine, J., Lebeaux, D., Leclercq, A., Lehacaut, J., Letrou, S., Manchon, P., Mandic, M., Meghadecha, M., Motiejunaite, J., Nouroudine, M., Piquard, V., Postolache, A., Quintin, C., Rexach, J., Roufai, L., Terzian, Z., Thy, M., Vignali, V., van Agtmael, M., Algera, A.G., van Baarle, F., Bax, D., Beudel, M., Bogaard, H.J., Bomers, M., Bos, L., Botta, M., de Brabander, J., de Bree, G., Brouwer, M.C., de Bruin, S., Bugiani, M., Bulle, E., Chouchane, O., Cloherty, A., Elbers, P., Fleuren, L., Geerlings, S., Geerts, B., Geijtenbeek, T., Girbes, A., Goorhuis, B., Grobusch, M.P., Hafkamp, F., Hagens, L., Hamann, J., Harris, V., Hemke, R., Hermans, S.M., Heunks, L., Hollmann, M.W., Horn, J., Hovius, J.W., de Jong, M.D., Koning, R., van Mourik, N., Nellen, J., Paulus, F., Peters, E., van der Poll, T., Preckel, B., Prins, J.M., Raasveld, J., Reijnders, T., Schinkel, M., Schultz, M.J., Schuurman, A., Sigaloff, K., Smit, M., Stijnis, C.S., Stilma, W., Teunissen, C., Thoral, P., Tsonas, A., van der Valk, M., Veelo, D., Vlaar, APJ, de Vries, H., van Vugt, M., Wiersinga, W.J., Wouters, D., Zwinderman, AHK, van de Beek, D., Aiuti, A., Al Muhsen, S., Al-Mulla, F., Anderson, M.S., Arias, A.A., Bogunovic, D., Bolze, A., Bondarenko, A., Brodin, P., Bryceson, Y., Bustamante, C.D., Butte, M., Casari, G., Chakravorty, S., Christodoulou, J., Cirulli, E., Condino-Neto, A., Cooper, M.A., Dalgard, C.L., David, A., DeRisi, J.L., Desai, M., Drolet, B.A., Espinosa, S., Fellay, J., Franco, J.L., Gregersen, P.K., Hagin, D., Heath, J., Henrickson, S.E., Hsieh, E., Imai, K., Itan, Y., Karamitros, T., Kisand, K., Ku, C.L., Ling, Y., Lucas, C.L., Maniatis, T., Marodi, L., Milner, J., Mironska, K., Mogensen, T., Morio, T., Notarangelo, L.D., Novelli, A., Novelli, G., O'Farrelly, C., Okada, S., Ozcelik, T., Planas, A.M., Prando, C., Pujol, A., Quintana-Murci, L., Renia, L., Renieri, A., Rodríguez-Gallego, C., Sancho-Shimizu, V., Sankaran, V., Barrett, K.S., Snow, A., Spaan, A.N., Tangye, S., Turvey, S., Uddin, F., Uddin, M.J., Vazquez, S.E., Vinh, D.C., von Bernuth, H., Washington, N., Zawadzki, P., Su, H.C., Casanova, J.L., Jing, H., Tung, W., Luthers, C.R., Bauman, B.M., Shafer, S., Zheng, L., Zhang, Z., Kubo, S., Chauvin, S.D., Meguro, K., Shaw, E., Lenardo, M., Lack, J., Karlins, E., Hupalo, D.M., Rosenberger, J., Sukumar, G., Wilkerson, M.D., Zhang, X., Children's Hospital, HUS Children and Adolescents, Clinicum, Department of Medicine, Zhang, Q., Liu, Z., Moncada-Velez, M., Chen, J., Ogishi, M., Bigio, B., Yang, R., Arias, A. A., Zhou, Q., Han, J. E., Ugurbil, A. C., Zhang, P., Rapaport, F., Li, J., Spaan, A. N., Boisson, B., Boisson-Dupuis, S., Puel, A., Ciancanelli, M. J., Zhang, S. -Y., Beziat, V., Jouanguy, E., Cobat, A., Casanova, J. -L., Bastard, P., Korol, C., Rosain, J., Chbihi, M., Lorenzo, L., Bizien, L., Neehus, A. -L., Kerner, G., Seeleuthner, Y., Manry, J., Le Voyer, T., Le Pen, J., Schneider, W. M., Razooky, B. S., Hoffmann, H. -H., Michailidis, E., Rice, C. M., Sabli, I. K. D., Hodeib, S., Bilguvar, K., Ye, J., Zhang, Y., Notarangelo, L. D., Su, H. C., Onodi, F., Korniotis, S., Karpf, L., Soumelis, V., Bonnet-Madin, L., Amara, A., Dorgham, K., Gorochov, G., Smith, N., Duffy, D., Moens, L., Meade, P., Garcia-Sastre, A., Krammer, F., Corneau, A., Khan, T., Marr, N., Roussel, L., Vinh, D. C., Alosaimi, M. F., Alsohime, F., Hasanato, R., Al-Saud, H., Almourfi, F., Al-Muhsen, S. Z., Al Turki, S., Biondi, A., Bettini, L. R., D'Angio, M., Bonfanti, P., Imberti, L., Sottini, A., Paghera, S., Quiros-Roldan, E., Rossi, C., Oler, A. J., Tompkins, M. F., Alba, C., Dalgard, C. L., Smits, G., Goffard, J. -C., Soler-Palacin, P., Martin-Nalda, A., Morange, P. -E., Yasar, K. K., Karabela, S. N., Laouenan, C., Snow, A. L., Milner, J. D., Mogensen, T. H., Nussenzweig, M., Lifton, R. P., Valsecchi, M. G., Akcan, O. M., Darazam, I. A., Aldave, J. C., Ramos, M. A., Nadji, S. A., Allende, L. M., Alyanakian, M. -A., Antoli, A., Blanch, G. R., Riera, J. S., Moreno, X. S., Levy, R., Feldman, H. B., Blandinieres, A., Clave, P., Lambrecht, B. N., van Braeckel, E., Bousfiha, A. A., Bueno, M. R. P., Castro, M. V., Matos, L. R. B., Agra, J. J. C., Velez-Santamaria, V., de Vera, M. C., Cheng, M. P., Darley, D. R., Diehl, J. -L., Rebillat, A. -S., Vilaire, M. E., Elnagdy, M. H., Erdeniz, E. H., Aytekin, S. E., Arquero, M. F., Fumado, V., Ursini, M. V., Solis, B. G., de Diego, R. P., van Den Rym, A. M., Alarcon, M. G., Girona-Alarcon, M., Gonzalez-Montelongo, R., Inigo-Campos, A., Lorenzo-Salazar, J. M., Munoz-Barrera, A., Guner, S. N., Hammarstrom, L., Holanda-Pena, M. S., Horcajada, J. P., Iglesias, A. D., Arranz, M. J., Demirkol, Y. K., Krol, Z. J., Kwan, Y. W. M., Lagier, J. -C., Lau, Y. -L., Leo, Y. -S., Young, B. E., Lopez, R. L., Luyt, C. -E., Lye, D. C., Pereira, J. M., Pueyo, D. M., Matthews, G. V., Mege, J. -L., Meritet, J. -F., Melian, A. M., Martinez, A. M., Neves, J. F., Ng, L. F. P., Medina, Y. N., Cuadros, E. N., Gonzalo Ocejo-Vinyals, J., Pan-Hammarstrom, Q., Richard, J. -C., Riviere, J. G., Rodriguez-Palmero, A., Romero, C. S., del Prado, M. Y. R., Sanchez-Ramon, S., Schweitzer, C. E., Seijo, L. M., Seppanen, M. R. J., Ilovich, A. S., Smadja, D. M., Sole-Violan, J., Taupin, J. -L., Tavernier, S. J., Alvarez, J. T., van de Velde, S., van Praet, J., Silveira, C. D., Debray, M. -P., Lescure, F. -X., Lucet, J. C., Mentre, F., Mohammed, N. S., Tellier, M. -C., Timsit, J. -F., Teoule, F., Puechal, O., Desvallees, M., Enouf, V. V. E., Levy, Y., Ecobichon, J. -L., Amat, K. K. A., Lucet, J. -C., Grobusch, M. P., Hermans, S. M., Hovius, J. W., Prins, J. M., Stijnis, C. S., Joost Wiersinga, W., Algera, A. G., Schultz, M. J., Brouwer, M. C., Bogaard, H. J., Hollmann, M. W., de Jong, M. D., Vlaar, A. P. J., Zwinderman, A. H., Muhsen, S. A., Anderson, M. S., Barrett, K. S., Bustamante, C. D., Cooper, M. A., Derisi, J. L., Drolet, B. A., Franco, J. L., Gregersen, P. K., Henrickson, S. E., Ku, C. -L., Lucas, C. L., Planas, A. M., Uddin, M. J., Vazquez, S. E., Chauvin, S. D., Luthers, C. R., Bauman, B. M., Hupalo, D. M., Wilkerson, M. D., Zhang, Qian [0000-0002-9040-3289], Bastard, Paul [0000-0002-5926-8437], Le Pen, Jeremie [0000-0001-7025-9526], Moncada-Velez, Marcela [0000-0002-3073-5345], Ogishi, Masato [0000-0003-2421-7389], Sabli, Ira K. D. [0000-0002-0170-2990], Hodeib, Stephanie [0000-0002-5978-6189], Korol, Cecilia [0000-0002-0023-8823], Bilguvar, Kaya [0000-0002-7313-7652], Bolze, Alexandre [0000-0001-7399-2766], Bigio, Benedetta [0000-0001-7291-5638], Yang, Rui [0000-0003-4427-2158], Arias, Andrés Augusto [0000-0002-9478-8403], Zhou, Qinhua [0000-0002-5112-3727], Chbihi, Marwa [0000-0002-2771-851X], Bonnet-Madin, Lucie [0000-0002-9848-3287], Dorgham, Karim [0000-0001-9539-3203], Smith, Nikaïa [0000-0002-0202-612X], Schneider, William M. [0000-0001-9407-6118], Razooky, Brandon S. [0000-0002-5263-1512], Hoffmann, Hans-Heinrich [0000-0003-0554-0244], Michailidis, Eleftherios [0000-0002-9907-4346], Han, Jin Eun [0000-0003-1112-9320], Lorenzo, Lazaro [0000-0001-6648-8684], Bizien, Lucy [0000-0001-9163-9122], Meade, Philip [0000-0002-6754-7209], Neehus, Anna-Lena [0000-0002-8573-6820], Ugurbil, Aileen Camille [0000-0002-9450-3092], Kerner, Gaspard [0000-0003-0146-9428], Zhang, Peng [0000-0002-6129-567X], Rapaport, Franck [0000-0001-6553-2110], Manry, Jérémy [0000-0001-5998-2051], Masson, Cecile [0000-0001-7870-7821], Schlüter, Agatha [0000-0001-6732-1528], Le Voyer, Tom [0000-0002-0630-8626], Khan, Taushif [0000-0002-7917-8965], Fellay, Jacques [0000-0002-8240-939X], Roussel, Lucie [0000-0001-5355-702X], Alosaimi, Mohammed F. [0000-0002-8025-3491], Al-Mulla, Fahd [0000-0001-5409-3829], Almourfi, Feras [0000-0002-5166-4662], Alsohime, Fahad [0000-0002-4979-3895], Al Turki, Saeed [0000-0001-7017-336X], Hasanato, Rana [0000-0002-4697-2222], Beek, Diederik van der [0000-0002-4571-044X], Bettini, Laura Rachele [0000-0002-0280-1704], Bonfanti, Paolo [0000-0001-7289-8823], Oler, Andrew J. [0000-0002-6310-0434], Tompkins, Miranda F. [0000-0003-2941-7515], Alba, Camille [0000-0002-0458-1629], Smits, Guillaume [0000-0003-2845-6758], Soler-Palacín, Pere [0000-0002-0346-5570], Martin-Nalda, Andrea [0000-0002-3590-0186], Colobran, Roger [0000-0002-5964-536X], Çölkesen, Fatma [0000-0001-9545-5179], Yasar, Kadriye Kart [0000-0003-2963-4894], Senoglu, Sevtap [0000-0003-4796-9583], Karabela, Şemsi Nur [0000-0003-2562-3004], Rodríguez-Gallego, Carlos [0000-0002-4344-8644], Novelli, Giuseppe [0000-0002-7781-602X], Tandjaoui-Lambiotte, Yacine [0000-0003-1123-4788], and Laouénan, Cédric [0000-0002-3681-6314]
- Subjects
Male ,COVID19 ,Interferon Regulatory Factor-7 ,[SDV]Life Sciences [q-bio] ,NF-KAPPA-B ,Receptor, Interferon alpha-beta ,SUSCEPTIBILITY ,susceptibility ,Interferon alpha-beta ,CoV-Contact Cohort ,0302 clinical medicine ,Interferon ,Loss of Function Mutation ,[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,80 and over ,Medicine and Health Sciences ,Viral ,Online ,Imagine COVID Group ,Child ,Adolescent ,Adult ,Aged ,Aged, 80 and over ,Alleles ,Asymptomatic Infections ,Betacoronavirus ,COVID-19 ,Child, Preschool ,Coronavirus Infections/genetics ,Coronavirus Infections/immunology ,Female ,Genetic Loci ,Genetic Predisposition to Disease ,Humans ,Infant ,Interferon Regulatory Factor-7/deficiency ,Interferon Regulatory Factor-7/genetics ,Interferon Type I/immunology ,Middle Aged ,Pandemics ,Pneumonia, Viral/genetics ,Pneumonia, Viral/immunology ,Receptor, Interferon alpha-beta/deficiency ,Receptor, Interferon alpha-beta/genetics ,SARS-CoV-2 ,Toll-Like Receptor 3/deficiency ,Toll-Like Receptor 3/genetics ,Young Adult ,Research Articles ,0303 health sciences ,Multidisciplinary ,COVID Clinicians ,deficiency ,3. Good health ,Multidisciplinary Sciences ,DEFICIENCY ,Settore MED/03 ,030220 oncology & carcinogenesis ,Interferon Type I ,Science & Technology - Other Topics ,medicine.symptom ,Coronavirus Infections ,Receptor ,medicine.drug ,NIAID-USUHS ,Research Article ,General Science & Technology ,HERPES-SIMPLEX ENCEPHALITIS ,French COVID Cohort Study Group ,Pneumonia, Viral ,Immunology ,Asymptomatic ,Virus ,03 medical and health sciences ,Immunity ,nf-kappa-b ,medicine ,Genetics ,Preschool ,COVID Human Genetic Effort ,030304 developmental biology ,Biobank ,Science & Technology ,business.industry ,R-Articles ,TAGC COVID Immunity Group ,Médecine pathologie humaine ,herpes-simplex encephalitis ,Pneumonia ,Amsterdam UMC Covid-19 ,medicine.disease ,COVID-STORM Clinicians ,Toll-Like Receptor 3 ,3121 General medicine, internal medicine and other clinical medicine ,IRF7 ,3111 Biomedicine ,business ,Interferon type I ,Interferon regulatory factors - Abstract
COVID-STORM Clinicians Giuseppe Foti1, Giacomo Bellani 1, Giuseppe Citerio1, Ernesto Contro1, Alberto Pesci2, Maria Grazia Valsecchi3, Marina Cazzaniga4 1Department of Emergency, Anesthesia and Intensive Care, School of Medicine and Surgery, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy. 2Department of Pneumology, School of Medicine and Surgery, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy. 3Center of Bioinformatics and Biostatistics, School of Medicine and Surgery, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy. 4Phase I Research Center, School of Medicine and Surgery, University of Milano-Bicocca, San Gerardo Hospital, Monza IT, COVID Clinicians Jorge Abad1, Sergio Aguilera-Albesa2, Ozge Metin Akcan3, Ilad Alavi Darazam4, Juan C. Aldave5, Miquel Alfonso Ramos6, Seyed Alireza Nadji7, Gulsum Alkan8, Jerome Allardet-Servent9, Luis M. Allende10, Laia Alsina11, Marie-Alexandra Alyanakian12, Blanca Amador-Borrero13, Zahir Amoura14, Arnau Antolí15, Sevket Arslan16, Sophie Assant17, Terese Auguet18, Axelle Azot19, Fanny Bajolle20, Aurélie Baldolli21, Maite Ballester22, Hagit Baris Feldman23, Benoit Barrou24, Alexandra Beurton25, Agurtzane Bilbao26, Geraldine Blanchard-Rohner27, Ignacio Blanco1, Adeline Blandinières28, Daniel Blazquez-Gamero29, Marketa Bloomfield30, Mireia Bolivar-Prados31, Raphael Borie32, Cédric Bosteels33, Ahmed A. Bousfiha34, Claire Bouvattier35, Oksana Boyarchuk36, Maria Rita P. Bueno37, Jacinta Bustamante20, Juan José Cáceres Agra38, Semra Calimli39, Ruggero Capra40, Maria Carrabba41, Carlos Casasnovas42, Marion Caseris43, Martin Castelle44, Francesco Castelli45, Martín Castillo de Vera46, Mateus V. Castro37, Emilie Catherinot47, Martin Chalumeau48, Bruno Charbit49, Matthew P. Cheng50, Père Clavé31, Bonaventura Clotet51, Anna Codina52, Fatih Colkesen53, Fatma Çölkesen54, Roger Colobran55, Cloé Comarmond56, David Dalmau57, David Ross Darley58, Nicolas Dauby59, Stéphane Dauger60, Loic de Pontual61, Amin Dehban62, Geoffroy Delplancq63, Alexandre Demoule64, Jean-Luc Diehl65, Stephanie Dobbelaere66, Sophie Durand67, Waleed Eldars68, Mohamed Elgamal69, Marwa H. Elnagdy70, Melike Emiroglu71, Emine Hafize Erdeniz72, Selma Erol Aytekin73, Romain Euvrard74, Recep Evcen75, Giovanna Fabio41, Laurence Faivre76, Antonin Falck43, Muriel Fartoukh77, Morgane Faure78, Miguel Fernandez Arquero79, Carlos Flores80, Bruno Francois81, Victoria Fumadó82, Francesca Fusco83, Blanca Garcia Solis84, Pascale Gaussem85, Juana Gil-Herrera86, Laurent Gilardin87, Monica Girona Alarcon88, Mònica Girona-Alarcón88, Jean-Christophe Goffard89, Funda Gok90, Rafaela González-Montelongo91, Antoine Guerder92, Yahya Gul93, Sukru Nail Guner93, Marta Gut94, Jérôme Hadjadj95, Filomeen Haerynck96, Rabih Halwani97, Lennart Hammarström98, Nevin Hatipoglu99, Elisa Hernandez-Brito100, Cathérine Heijmans101, María Soledad Holanda-Peña102, Juan Pablo Horcajada103, Levi Hoste104, Eric Hoste105, Sami Hraiech106, Linda Humbert107, Alejandro D. Iglesias108, Antonio Íñigo-Campos91, Matthieu Jamme109, María Jesús Arranz110, Iolanda Jordan111, Philippe Jorens112, Fikret Kanat113, Hasan Kapakli114, Iskender Kara115, Adem Karbuz116, Kadriye Kart Yasar117, Sevgi Keles118, Yasemin Kendir Demirkol119, Adam Klocperk120, Zbigniew J. Król121, Paul Kuentz122, Yat Wah M. Kwan123, Jean-Christophe Lagier124, Bart N. Lambrecht33, Yu-Lung Lau125, Fleur Le Bourgeois60, Yee-Sin Leo126, Rafael Leon Lopez127, Daniel Leung125, Michael Levin128, Michael Levy60, Romain Lévy20, Zhi Li49, Agnes Linglart129, Bart Loeys130, José M. Lorenzo-Salazar91, Céline Louapre131, Catherine Lubetzki131, Charles-Edouard Luyt132, David C. Lye133, Davood Mansouri134, Majid Marjani135, Jesus Marquez Pereira136, Andrea Martin137, David Martínez Pueyo138, Javier Martinez-Picado139, Iciar Marzana140, Alexis Mathian14, Larissa R. B. Matos37, Gail V. Matthews141, Julien Mayaux142, Jean-Louis Mège143, Isabelle Melki144, Jean-François Meritet145, Ozge Metin146, Isabelle Meyts147, Mehdi Mezidi148, Isabelle Migeotte149, Maude Millereux150, Tristan Mirault151, Clotilde Mircher67, Mehdi Mirsaeidi152, Abián Montesdeoca Melián153, Antonio Morales Martinez154, Pierre Morange155, Clémence Mordacq107, Guillaume Morelle156, Stéphane Mouly13, Adrián Muñoz-Barrera91, Leslie Naesens157, Cyril Nafati158, João Farela Neves159, Lisa FP. Ng160, Yeray Novoa Medina161, Esmeralda Nuñez Cuadros162, J. Gonzalo Ocejo-Vinyals163, Zerrin Orbak164, Mehdi Oualha20, Tayfun Özçelik165, Qiang Pan-Hammarström166, Christophe Parizot142, Tiffany Pascreau167, Estela Paz-Artal168, Sandra Pellegrini49, Rebeca Pérez de Diego84, Aurélien Philippe169, Quentin Philippot77, Laura Planas-Serra170, Dominique Ploin171, Julien Poissy172, Géraldine Poncelet43, Marie Pouletty173, Paul Quentric142, Didier Raoult143, Anne-Sophie Rebillat67, Ismail Reisli174, Pilar Ricart175, Jean-Christophe Richard176, Nadia Rivet28, Jacques G. Rivière177, Gemma Rocamora Blanch15, Carlos Rodrigo1, Carlos Rodriguez-Gallego178, Agustí Rodríguez-Palmero179, Carolina Soledad Romero180, Anya Rothenbuhler181, Flore Rozenberg182, Maria Yolanda Ruiz del Prado183, Joan Sabater Riera15, Oliver Sanchez184, Silvia Sánchez-Ramón185, Agatha Schluter170, Matthieu Schmidt186, Cyril E. Schweitzer187, Francesco Scolari188, Anna Sediva189, Luis M. Seijo190, Damien Sene13, Sevtap Senoglu117, Mikko R. J. Seppänen191, Alex Serra Ilovich192, Mohammad Shahrooei62, Hans Slabbynck193, David M. Smadja194, Ali Sobh195, Xavier Solanich Moreno15, Jordi Solé-Violán196, Catherine Soler197, Pere Soler-Palacín137, Yuri Stepanovskiy198, Annabelle Stoclin199, Fabio Taccone149, Yacine Tandjaoui-Lambiotte200, Jean-Luc Taupin201, Simon J. Tavernier202, Benjamin Terrier203, Caroline Thumerelle107, Gabriele Tomasoni204, Julie Toubiana48, Josep Trenado Alvarez205, Sophie Trouillet-Assant206, Jesús Troya207, Alessandra Tucci208, Matilde Valeria Ursini83, Yurdagul Uzunhan209, Pierre Vabres210, Juan Valencia-Ramos211, Eva Van Braeckel33, Stijn Van de Velde212, Ana Maria Van Den Rym84, Jens Van Praet213, Isabelle Vandernoot214, Hulya Vatansev215, Valentina Vélez-Santamaria42, Sébastien Viel171, Cédric Vilain216, Marie E. Vilaire67, Audrey Vincent35, Guillaume Voiriot217, Fanny Vuotto107, Alper Yosunkaya90, Barnaby E. Young126, Fatih Yucel218, Faiez Zannad219, Mayana Zatz37, Alexandre Belot220*, Imagine COVID Group Christine Bole-Feysot, Stanislas Lyonnet*, Cécile Masson, Patrick Nitschke, Aurore Pouliet, Yoann Schmitt, Frederic Tores, Mohammed Zarhrate Imagine Institute, Université de Paris, INSERM UMR 1163, Paris, France. *Leader of the Imagine COVID Group., French COVID Cohort Study Group Laurent Abel1, Claire Andrejak2, François Angoulvant3, Delphine Bachelet4, Romain Basmaci5, Sylvie Behillil6, Marine Beluze7, Dehbia Benkerrou8, Krishna Bhavsar4, François Bompart9, Lila Bouadma4, Maude Bouscambert10, Mireille Caralp11, Minerva Cervantes-Gonzalez12, Anissa Chair4, Alexandra Coelho13, Camille Couffignal4, Sandrine Couffin-Cadiergues14, Eric D’Ortenzio12, Charlene Da Silveira4, Marie-Pierre Debray4, Dominique Deplanque15, Diane Descamps16, Mathilde Desvallées17, Alpha Diallo18, Alphonsine Diouf13, Céline Dorival8, François Dubos19, Xavier Duval4, Philippine Eloy4, Vincent VE Enouf20, Hélène Esperou21, Marina Esposito-Farese4, Manuel Etienne22, Nadia Ettalhaoui4, Nathalie Gault4, Alexandre Gaymard10, Jade Ghosn4, Tristan Gigante23, Isabelle Gorenne4, Jérémie Guedj24, Alexandre Hoctin13, Isabelle Hoffmann4, Salma Jaafoura21, Ouifiya Kafif4, Florentia Kaguelidou25, Sabina Kali4, Antoine Khalil4, Coralie Khan17, Cédric Laouénan4, Samira Laribi4, Minh Le4, Quentin Le Hingrat4, Soizic Le Mestre18, Hervé Le Nagard24, François-Xavier Lescure4, Yves Lévy26, Claire Levy-Marchal27, Bruno Lina10, Guillaume Lingas24, Jean Christophe Lucet4, Denis Malvy28, Marina Mambert13, France Mentré4, Noémie Mercier18, Amina Meziane8, Hugo Mouquet20, Jimmy Mullaert4, Nadège Neant24, Marion Noret29, Justine Pages30, Aurélie Papadopoulos21, Christelle Paul18, Nathan Peiffer-Smadja4, Ventzislava Petrov-Sanchez18, Gilles Peytavin4, Olivier Picone31, Oriane Puéchal12, Manuel Rosa-Calatrava10, Bénédicte Rossignol23, Patrick Rossignol32, Carine Roy4, Marion Schneider4, Caroline Semaille12, Nassima Si Mohammed4, Lysa Tagherset4, Coralie Tardivon4, Marie-Capucine Tellier4, François Téoulé8, Olivier Terrier10, Jean-François Timsit4, Théo Trioux4, Christelle Tual33, Sarah Tubiana4, Sylvie van der Werf34, Noémie Vanel35, Aurélie Veislinger33, Benoit Visseaux16, Aurélie Wiedemann26, Yazdan Yazdanpanah36 1Inserm UMR 1163, Paris, France. 2CHU Amiens, France. 3Hôpital Necker, Paris, France. 4Hôpital Bichat, Paris, France. 5Hôpital Louis Mourrier, Colombes, France. 6Institut Pasteur, Paris, France. 7F-CRIN Partners Platform, AP-HP, Université de Paris, Paris, France. 8Inserm UMR 1136, Paris, France. 9Drugs for Neglected Diseases Initiative, Geneva, Switzerland. 10Inserm UMR 1111, Lyon, France. 11Inserm Transfert, Paris, France. 12REACTing, Paris, France. 13Inserm UMR 1018, Paris, France. 14Inserm, Pôle Recherche Clinique, Paris, France. 15CIC 1403 Inserm-CHU Lille, Paris, France. 16Université de Paris, IAME, INSERM UMR 1137, AP-HP, University Hospital Bichat Claude Bernard, Virology, Paris, France. 17Inserm UMR 1219, Bordeaux, France. 18ANRS, Paris, France. 19CHU Lille, Lille, France. 20Pasteur Institute, Paris, France. 21Inserm sponsor, Paris, France. 22CHU Rouen–SMIT, Rouen, France. 23FCRIN INI-CRCT, Nancy, France. 24Inserm UMR 1137, Paris, France. 25Centre d’Investigation Clinique, Inserm CIC1426, Hôpital Robert Debré, Paris, France. 26Inserm UMR 955, Créteil, France; Vaccine Research Instiute (VRI), Paris, France. 27F-CRIN INI-CRCT, Paris, France. 28CHU de Bordeaux–SMIT, Bordeaux, France. 29RENARCI, Annecy, France. 30Hôpital Robert Debré, Paris, France. 31Hôpital Louis Mourier–Gynécologie, Colombes, France. 32University of Lorraine, Plurithematic Clinical Investigation Centre Inserm CIC-P; 1433, Inserm U1116, CHRU Nancy Hopitaux de Brabois, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France. 33Inserm CIC-1414, Rennes, France. 34Institut Pasteur, UMR 3569 CNRS, Université de Paris, Paris, France. 35Hôpital la Timone, Marseille, France. 36Bichat–SMIT, Paris, France., CoV-Contact Cohort Loubna Alavoine1, Karine K. A. Amat2, Sylvie Behillil3, Julia Bielicki4, Patricia Bruijning5, Charles Burdet6, Eric Caumes7, Charlotte Charpentier8, Bruno Coignard9, Yolande Costa1, Sandrine Couffin-Cadiergues10, Florence Damond8, Aline Dechanet11, Christelle Delmas10, Diane Descamps8, Xavier Duval1, Jean-Luc Ecobichon1, Vincent Enouf3, Hélène Espérou10, Wahiba Frezouls1, Nadhira Houhou11, Emila Ilic-Habensus1, Ouifiya Kafif11, John Kikoine11, Quentin Le Hingrat8, David Lebeaux12, Anne Leclercq1, Jonathan Lehacaut1, Sophie Letrou1, Bruno Lina13, Jean-Christophe Lucet14, Denis Malvy15, Pauline Manchon11, Milica Mandic1, Mohamed Meghadecha16, Justina Motiejunaite17, Mariama Nouroudine1, Valentine Piquard11, Andreea Postolache11, Caroline Quintin1, Jade Rexach1, Layidé Roufai10, Zaven Terzian11, Michael Thy18, Sarah Tubiana1, Sylvie van der Werf3, Valérie Vignali1, Benoit Visseaux8, Yazdan Yazdanpanah14 1Centre d’Investigation Clinique, Inserm CIC 1425, Hôpital Bichat Claude Bernard, APHP, Paris, France. 2IMEA Fondation Léon M’Ba, Paris, France. 3Institut Pasteur, UMR 3569 CNRS, Université de Paris, Paris, France. 4University of Basel Children’s Hospital. 5Julius Center for Health Sciences and Primary Care, Utrecht, Netherlands. 6Université de Paris, IAME, Inserm UMR 1137, F-75018, Paris, France, Hôpital Bichat Claude Bernard, APHP, Paris, France. 7Hôpital Pitiè Salpétriere, APHP, Paris. 8Université de Paris, IAME, INSERM UMR 1137, AP-HP, University Hospital Bichat Claude Bernard, Virology, Paris, France. 9Santé Publique France, Saint Maurice, France. 10Pole Recherche Clinique, Inserm, Paris, France. 11Hôpital Bichat Claude Bernard, APHP, Paris, France. 12APHP, Paris, France. 13Virpath Laboratory, International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France. 14IAME Inserm UMR 1138, Hôpital Bichat Claude Bernard, APHP, Paris, France. 15Service des Maladies Infectieuses et Tropicales; Groupe Pellegrin-Place Amélie-Raba-Léon, Bordeaux, France. 16Hôpital Hotel Dieu, APHP, Paris, France. 17Service des Explorations Fonctionnelles, Hôpital Bichat–Claude Bernard, APHP, Paris, France. 18Center for Clinical Investigation, Assistance Publique-Hôpitaux de Paris, Bichat-Claude Bernard University Hospital, Paris, France., Amsterdam UMC Covid-19 Biobank Michiel van Agtmael1, Anna Geke Algera2, Frank van Baarle2, Diane Bax3, Martijn Beudel4, Harm Jan Bogaard5, Marije Bomers1, Lieuwe Bos2, Michela Botta2, Justin de Brabander6, Godelieve de Bree6, Matthijs C. Brouwer4, Sanne de Bruin2, Marianna Bugiani7, Esther Bulle2, Osoul Chouchane1, Alex Cloherty3, Paul Elbers2, Lucas Fleuren2, Suzanne Geerlings1, Bart Geerts8, Theo Geijtenbeek9, Armand Girbes2, Bram Goorhuis1, Martin P. Grobusch1, Florianne Hafkamp9, Laura Hagens2, Jorg Hamann10, Vanessa Harris1, Robert Hemke11, Sabine M. Hermans1, Leo Heunks2, Markus W. Hollmann8, Janneke Horn2, Joppe W. Hovius1, Menno D. de Jong12, Rutger Koning4, Niels van Mourik2, Jeaninne Nellen1, Frederique Paulus2, Edgar Peters1, Tom van der Poll1, Benedikt Preckel8, Jan M. Prins1, Jorinde Raasveld2, Tom Reijnders1, Michiel Schinkel1, Marcus J. Schultz2, Alex Schuurman13, Kim Sigaloff1, Marry Smit2, Cornelis S. Stijnis1, Willemke Stilma2, Charlotte Teunissen14, Patrick Thoral2, Anissa Tsonas2, Marc van der Valk1, Denise Veelo8, Alexander P.J. Vlaar15, Heder de Vries2, Michèle van Vugt1, W. Joost Wiersinga1, Dorien Wouters16, A. H. (Koos) Zwinderman17, Diederik van de Beek4* 1Department of Infectious Diseases, Amsterdam UMC, Amsterdam, Netherlands. 2Department of Intensive Care, Amsterdam UMC, Amsterdam, Netherlands. 3Experimental Immunology, Amsterdam UMC, Amsterdam, Netherlands. 4Department of Neurology, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, Netherlands. 5Department of Pulmonology, Amsterdam UMC, Amsterdam, Netherlands. 6Department of Infectious Diseases, Amsterdam UMC, Amsterdam, Netherlands. 7Department of Pathology, Amsterdam UMC, Amsterdam, Netherlands. 8Department of Anesthesiology, Amsterdam UMC, Amsterdam, Netherlands. 9Department of Experimental Immunology, Amsterdam UMC, Amsterdam, Netherlands. 10Amsterdam UMC Biobank Core Facility, Amsterdam UMC, Amsterdam, Netherlands. 11Department of Radiology, Amsterdam UMC, Amsterdam, Netherlands. 12Department of Medical Microbiology, Amsterdam UMC, Amsterdam, Netherlands. 13Department of Internal Medicine, Amsterdam UMC, Amsterdam, Netherlands. 14Neurochemical Laboratory, Amsterdam UMC, Amsterdam, Netherlands. 15Department of Intensive Care, Amsterdam UMC, Amsterdam, Netherlands. 16Department of Clinical Chemistry, Amsterdam UMC, Amsterdam, Netherlands. 17Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Amsterdam, Netherlands. 18Department of Neurology, Amsterdam UMC, Amsterdam, Netherlands. *Leader of the AMC Consortium., COVID Human Genetic Effort Laurent Abel1, Alessandro Aiuti2, Saleh Al Muhsen3, Fahd Al-Mulla4, Mark S. Anderson5, Andrés Augusto Arias6, Hagit Baris Feldman7, Dusan Bogunovic8, Alexandre Bolze9, Anastasiia Bondarenko10, Ahmed A. Bousfiha11, Petter Brodin12, Yenan Bryceson12, Carlos D. Bustamante13, Manish Butte14, Giorgio Casari15, Samya Chakravorty16, John Christodoulou17, Elizabeth Cirulli9, Antonio Condino-Neto18, Megan A. Cooper19, Clifton L. Dalgard20, Alessia David21, Joseph L. DeRisi22, Murkesh Desai23, Beth A. Drolet24, Sara Espinosa25, Jacques Fellay26, Carlos Flores27, Jose Luis Franco28, Peter K. Gregersen29, Filomeen Haerynck30, David Hagin31, Rabih Halwani32, Jim Heath33, Sarah E. Henrickson34, Elena Hsieh35, Kohsuke Imai36, Yuval Itan8, Timokratis Karamitros37, Kai Kisand38, Cheng-Lung Ku39, Yu-Lung Lau40, Yun Ling41, Carrie L. Lucas42, Tom Maniatis43, Davoud Mansouri44, Laszlo Marodi45, Isabelle Meyts46, Joshua Milner47, Kristina Mironska48, Trine Mogensen49, Tomohiro Morio50, Lisa FP. Ng51, Luigi D. Notarangelo52, Antonio Novelli53, Giuseppe Novelli54, Cliona O’Farrelly55, Satoshi Okada56, Tayfun Ozcelik57, Rebeca Perez de Diego58, Anna M. Planas59, Carolina Prando60, Aurora Pujol61, Lluis Quintana-Murci62, Laurent Renia63, Alessandra Renieri64, Carlos Rodríguez-Gallego65, Vanessa Sancho-Shimizu66, Vijay Sankaran67, Kelly Schiabor Barrett9, Mohammed Shahrooei68, Andrew Snow69, Pere Soler-Palacín70, András N. Spaan71, Stuart Tangye72, Stuart Turvey73, Furkan Uddin74, Mohammed J. Uddin75, Diederik van de Beek76, Sara E. Vazquez77, Donald C. Vinh78, Horst von Bernuth79, Nicole Washington9, Pawel Zawadzki80, Helen C. Su52, Jean-Laurent Casanova81 1INSERM U1163, University of Paris, Imagine Institute, Paris, France. 2San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale San Raffaele, Milan, Italy. 3King Saud University, Riyadh, Saudi Arabia. 4Kuwait University, Kuwait City, Kuwait. 5University of California, San Francisco, San Francisco, CA, USA. 6Universidad de Antioquia, Group of Primary Immunodeficiencies, Antioquia, Colombia. 7The Genetics Institute, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. 8Icahn School of Medicine at Mount Sinai, New York, NY, USA. 9Helix, San Mateo, CA, USA. 10Shupyk National Medical Academy for Postgraduate Education, Kiev, Ukraine. 11Clinical Immunology Unit, Pediatric Infectious Disease Departement, Faculty of Medicine and Pharmacy, Averroes University Hospital; LICIA Laboratoire d’Immunologie Clinique, d’Inflammation et d’Allergie, Hassann Ii University, Casablanca, Morocco. 12Karolinska Institute, Stockholm, Sweden. 13Stanford University, Stanford, CA, USA. 14University of California, Los Angeles, CA, USA. 15Medical Genetics, IRCCS Ospedale San Raffaele, Milan, Italy. 16Emory University Department of Pediatrics and Children’s Healthcare of Atlanta, Atlanta, GA, USA. 17Murdoch Children’s Research Institute, Victoria, Australia. 18University of São Paulo, São Paulo, Brazil. 19Washington University School of Medicine, St. Louis, MO, USA. 20The American Genome Center; Uniformed Services University of the Health Sciences, Bethesda, MD, USA. 21Centre for Bioinformatics and System Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK. 22University of California, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA. 23Bai Jerbai Wadia Hospital for Children, Mumbai, India. 24School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA. 25Instituto Nacional de Pediatria (National Institute of Pediatrics), Mexico City, Mexico. 26Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland. 27Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Canarian Health System, Santa Cruz de Tenerife, Spain. 28University of Antioquia, Medellín, Colombia. 29Feinstein Institute for Medical Research, Northwell Health USA, Manhasset, NY, USA. 30Department of Paediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency Ghent (CPIG), PID Research Lab, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Edegem, Belgium. 31The Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel. 32Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, UAE. 33Institute for Systems Biology, Seattle, WA, USA. 34Children’s Hospital of Philadelphia, Philadelphia, PA, USA. 35Anschutz Medical Campus, Aurora, CO, USA. 36Riken, Tokyo, Japan. 37Hellenic Pasteur Institute, Athens, Greece. 38University of Tartu, Tartu, Estonia. 39Chang Gung University, Taoyuan County, Taiwan. 40The University of Hong Kong, Hong Kong, China. 41Shanghai Public Health Clinical Center, Fudan University, Shanghai, China. 42Yale School of Medicine, New Haven, CT, USA. 43New York Genome Center, New York, NY, USA. 44Shahid Beheshti University of Medical Sciences, Tehran, Iran. 45Semmelweis University Budapest, Budapest, Hungary. 46KU Leuven, Department of Immunology, Microbiology and Transplantation, Leuven, Belgium. 47Columbia University Medical Center, New York, NY, USA. 48University Clinic for Children’s Diseases, Skopje, North Macedonia. 49Aarhus University, Aarhus, Denmark. 50Tokyo Medical & Dental University Hospital, Tokyo, Japan. 51Singapore Immunology Network, Singapore. 52National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. 53Bambino Gesù Children’s Hospital, Rome, Italy. 54Department of Biomedicine and Prevention, University of Rome “Tor Vergata,” Rome, Italy. 55Trinity College, Dublin, Ireland. 56Hiroshima University, Hiroshima, Japan. 57Bilkent University, Ankara, Turkey. 58Laboratory of Immunogenetics of Human Diseases, Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain. 59IIBB-CSIC, IDIBAPS, Barcelona, Spain. 60Faculdades Pequeno Príncipe e Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil. 61Neurometabolic Diseases Laboratory, IDIBELL–Hospital Duran I Reynals; Catalan Institution for Research and Advanced Studies (ICREA); CIBERER U759, ISCiii Madrid Spain, Barcelona, Spain. 62Institut Pasteur (CNRS UMR2000) and Collège de France, Paris, France. 63Infectious Diseases Horizontal Technology Center and Singapore Immunology Network, Agency for Science Technology (A*STAR), Singapore. 64Medical Genetics, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Italy; GEN-COVID Multicenter Study. 65Hospital Universitario de Gran Canaria Dr. Negrín, Canarian Health System, Canary Islands, Spain. 66Imperial College London, London, UK. 67Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA. 68Saeed Pathobiology and Genetic Lab, Tehran, Iran. 69Uniformed Services University of the Health Sciences, Bethesda, MD, USA. 70Hospital Universitari Vall d’Hebron, Barcelona, Spain. 71University Medical Center Utrecht, Amsterdam, The Netherlands. 72Garvan Institute of Medical Research, Sydney, Australia. 73The University of British Columbia, Vancouver, Canada. 74Holy Family Red Crescent Medical College; Centre for Precision Therapeutics, NeuroGen Children’s Healthcare; Genetics and Genomic Medicine Centre, NeuroGen Children’s Healthcare, Dhaka, Bangladesh. 75Mohammed Bin Rashid University of Medicine and Health Sciences, College of Medicine, Dubai, UAE; The Centre for Applied Genomics, Department of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada. 76Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, The Netherlands. 77University of California, San Francisco, CA, USA. 78McGill University Health Centre, Montreal, Canada. 79Charité–Berlin University Hospital Center, Berlin, Germany. 80Molecular Biophysics Division, Faculty of Physics, A. Mickiewicz University, Uniwersytetu Poznanskiego 2, Poznań, Poland. 81Rockefeller University, Howard Hughes Medical Institute, Necker Hospital, New York, NY, USA. *Leaders of the COVID Human Genetic Effort., NIAID-USUHS/TAGC COVID Immunity Group Huie Jing1,2, Wesley Tung1,2, Christopher R. Luthers3, Bradly M. Bauman3, Samantha Shafer2,4, Lixin Zheng2,4, Zinan Zhang2,4, Satoshi Kubo2,4, Samuel D. Chauvin2,4, Kazuyuki Meguro1,2, Elana Shaw1,2, Michael Lenardo2,4, Justin Lack5, Eric Karlins6, Daniel M. Hupalo7, John Rosenberger7, Gauthaman Sukumar7, Matthew D. Wilkerson7, Xijun Zhang7 1Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA. 2NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD, USA. 3Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA. 4Laboratory of Immune System Biology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA. 5NIAID Collaborative Bioinformatics Resource, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA. 6Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, Bethesda, MD, USA. 7The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA., Clinical outcome upon infection with SARS-CoV-2 ranges from silent infection to lethal COVID-19. We have found an enrichment in rare variants predicted to be loss-of-function (LOF) at the 13 human loci known to govern TLR3- and IRF7-dependent type I interferon (IFN) immunity to influenza virus, in 659 patients with life-threatening COVID-19 pneumonia, relative to 534 subjects with asymptomatic or benign infection. By testing these and other rare variants at these 13 loci, we experimentally define LOF variants in 23 patients (3.5%), aged 17 to 77 years, underlying autosomal recessive or dominant deficiencies. We show that human fibroblasts with mutations affecting this pathway are vulnerable to SARS-CoV-2. Inborn errors of TLR3- and IRF7-dependent type I IFN immunity can underlie life-threatening COVID-19 pneumonia in patients with no prior severe infection., We thank the generous donation from Fisher Center for Alzheimer’s Research Foundation for our research. The Laboratory of Human Genetics of Infectious Diseases is supported by the Howard Hughes Medical Institute, the Rockefeller University, the St. Giles Foundation, the National Institutes of Health (NIH) (R01AI088364), the National Center for Advancing Translational Sciences (NCATS), NIH Clinical and Translational Science Award (CTSA) program (UL1 TR001866), a Fast Grant from Emergent Ventures, Mercatus Center at George Mason University, the Yale Center for Mendelian Genomics and the GSP Coordinating Center funded by the National Human Genome Research Institute (NHGRI) (UM1HG006504 and U24HG008956), the French National Research Agency (ANR) under the “Investments for the Future” program (ANR-10-IAHU-01), the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (ANR-10-LABX-62-IBEID), the French Foundation for Medical Research (FRM) (EQU201903007798), the FRM and ANR GENCOVID project, ANRS-COV05, the Square Foundation, Grandir - Fonds de solidarité pour l’enfance, the SCOR Corporate Foundation for Science, Institut National de la Santé et de la Recherche Médicale (INSERM), the University of Paris. The French COVID Cohort study group was sponsored by Inserm and supported by the REACTing consortium and by a grant from the French Ministry of Health (PHRC 20-0424). Regione Lombardia, Italy (project “Risposta immune in pazienti con COVID-19 e co-morbidità”), and the Intramural Research Program of the NIAID, NIH. The laboratory of Genomes & Cell Biology of Disease is supported by “Integrative Biology of Emerging Infectious Diseases” (grant no. ANR-10-LABX-62-IBEID), the “Fondation pour la Recherche Medicale” (grant FRM - EQU202003010193), the “Agence Nationale de la Recherche” (ANR FLASH COVID project IDISCOVR cofounded by the “Fondation pour la Recherche Médicale”), University of Paris (“Plan de Soutien Covid-19”: RACPL20FIR01-COVID-SOUL). IM is a senior clinical investigator with the FWO Vlaanderen; IM and LM are supported by FWO G0C8517N – GOB5120N. The VS team was supported by “Agence Nationale de la Recherche” (ANR-17-CE15-0003, ANR-17-CE15-0003-01), and by Université de Paris “PLAN D’URGENCE COVID19”. LK was supported by a fellowship from the French Ministry of Research. VS-S is supported by a UKRI Future Leaders Fellowship (MR/S032304/1). SZA-M is supported by the Elite Journals Program at King Saud University through grant number PEJP-16-107. JM lab is supported by Columbia University COVID biobank and grant: UL1TR001873. Work in the Laboratory of Virology and Infectious Disease was supported by NIH grants P01AI138398-S1, 2U19AI111825, and R01AI091707-10S1, a George Mason University Fast Grant, and the G. Harold and Leila Y. Mathers Charitable Foundation. JLP is supported by a European Molecular Biology Organization Long-Term Fellowship (ALTF 380-2018). Work at the Neurometabolic Diseases Laboratory received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 824110 (EasiGenomics grant COVID-19/ PID12342) to A.P., and Roche and Illumina Covid Match Funds to M.G.. C.R.G and colleagues are supported by cInstituto de Salud Carlos III (COV20_01333 and COV20_01334), Spanish Ministry of Science and Innovation, with the funding of European Regional Development Fund-European Social Fund -FEDER-FSE; (RTC-2017-6471-1; AEI/FEDER, UE), and Cabildo Insular de Tenerife (CGIEU0000219140 and “Apuestas científicas del ITER para colaborar en la lucha contra la COVID-19”). D.C.V. is supported by the Fonds de la recherche en santé du Québec clinician-scientist scholar program. Helen Su is adjunct faculty at the University of Pennsylvania. A-L.N. was supported by the Foundation Bettencourt Schueller. The Amsterdam UMC Covid-19 Biobank was funded by the Netherlands Organization for Health Research and Development (ZonMw, NWO-vici 91819627), The Corona Research Fund (Amsterdam UMC), Dr. J. C. Vaillantfonds, and Amsterdam UMC. Work on COVID-19 at the AG-S lab is partly supported by NIH supplements to grants U19AI135972, U19AI142733 and R35 HL135834, and to contract HHSN272201800048C, by a DoD supplement to grant W81XWH-20-1-0270, by DARPA project HR0011-19-2-0020, by CRIP (Center for Research on Influenza Pathogenesis), a NIAID funded Center of Excellence for Influenza Research and Surveillance (CEIRS, contract HHSN272201400008C), by an NIAID funded Collaborative Influenza Vaccine Innovation Center (SEM-CIVIC, contract 75N93019C00051) and by the generous support of the JPB Foundation, the Open Philanthropy Project (research grant 2020-215611(5384)) and anonymous donors. The Virscan analysis presented in fig. S11 was performed with financial support from Sidra Medicine
- Published
- 2020
- Full Text
- View/download PDF
9. Innovative vaccine approaches-a Keystone Symposia report
- Author
-
Cable, J, Rappuoli, R, Klemm, EJ, Kang, G, Mutreja, A, Wright, GJ, Pizza, M, Castro, SA, Hoffmann, JP, Alter, G, Carfi, A, Pollard, AJ, Krammer, F, Gupta, RK, Wagner, CE, Machado, V, Modjarrad, K, Corey, L, Gilbert, PB, Dougan, G, Lurie, N, Bjorkman, PJ, Chiu, C, Nemes, E, Gordon, SB, Steer, AC, Rudel, T, Blish, CA, Sandberg, JT, Brennan, K, Klugman, KP, Stuart, LM, Madhi, SA, Karp, CL, Cable, J, Rappuoli, R, Klemm, EJ, Kang, G, Mutreja, A, Wright, GJ, Pizza, M, Castro, SA, Hoffmann, JP, Alter, G, Carfi, A, Pollard, AJ, Krammer, F, Gupta, RK, Wagner, CE, Machado, V, Modjarrad, K, Corey, L, Gilbert, PB, Dougan, G, Lurie, N, Bjorkman, PJ, Chiu, C, Nemes, E, Gordon, SB, Steer, AC, Rudel, T, Blish, CA, Sandberg, JT, Brennan, K, Klugman, KP, Stuart, LM, Madhi, SA, and Karp, CL
- Abstract
The rapid development of COVID-19 vaccines was the result of decades of research to establish flexible vaccine platforms and understand pathogens with pandemic potential, as well as several novel changes to the vaccine discovery and development processes that partnered industry and governments. And while vaccines offer the potential to drastically improve global health, low-and-middle-income countries around the world often experience reduced access to vaccines and reduced vaccine efficacy. Addressing these issues will require novel vaccine approaches and platforms, deeper insight how vaccines mediate protection, and innovative trial designs and models. On June 28-30, 2021, experts in vaccine research, development, manufacturing, and deployment met virtually for the Keystone eSymposium "Innovative Vaccine Approaches" to discuss advances in vaccine research and development.
- Published
- 2022
10. The influence of structural racism, pandemic stress, and SARS-CoV-2 infection during pregnancy with adverse birth outcomes
- Author
-
Janevic, T., Lieb, W., Ibroci, E., Lynch, J., Lieber, M., Molenaar, N.M., Rommel, A.S., Witte, L.D. de, Ohrn, S., Carreño, J.M., Krammer, F., Zapata, L.B., Snead, M.C., Brody, R.I., Jessel, R.H., Sestito, S., Adler, A., Afzal, O., Gigase, F., Missall, R., Carrión, D., Stone, J., Bergink, V., Dolan, S.M., Howell, E.A., Janevic, T., Lieb, W., Ibroci, E., Lynch, J., Lieber, M., Molenaar, N.M., Rommel, A.S., Witte, L.D. de, Ohrn, S., Carreño, J.M., Krammer, F., Zapata, L.B., Snead, M.C., Brody, R.I., Jessel, R.H., Sestito, S., Adler, A., Afzal, O., Gigase, F., Missall, R., Carrión, D., Stone, J., Bergink, V., Dolan, S.M., and Howell, E.A.
- Abstract
Item does not contain fulltext, BACKGROUND: Structural racism and pandemic-related stress from the COVID-19 pandemic may increase the risk of adverse birth outcomes. OBJECTIVE: Our objective was to examine associations between neighborhood measures of structural racism and pandemic stress with 3 outcomes: SARS-CoV-2 infection, preterm birth, and delivering small-for-gestational-age newborns. Our secondary objective was to investigate the joint association of SARS-CoV-2 infection during pregnancy and neighborhood measures with preterm birth and delivering small-for-gestational-age newborns. STUDY DESIGN: We analyzed data of 967 patients from a prospective cohort of pregnant persons in New York City, comprising 367 White (38%), 169 Black (17%), 293 Latina (30%), and 87 Asian persons (9%), 41 persons of other race or ethnicity (4%), and 10 of unknown race or ethnicity (1%). We evaluated structural racism (social/built structural disadvantage, racial-economic segregation) and pandemic-related stress (community COVID-19 mortality, community unemployment rate increase) in quartiles by zone improvement plan code. SARS-CoV-2 serologic enzyme-linked immunosorbent assay was performed on blood samples from pregnant persons. We obtained data on preterm birth and small-for-gestational-age newborns from an electronic medical record database. We used log-binomial regression with robust standard error for clustering by zone improvement plan code to estimate associations of each neighborhood measure separately with 3 outcomes: SARS-CoV-2 infection, preterm birth, and small-for-gestational-age newborns. Covariates included maternal age, parity, insurance status, and body mass index. Models with preterm birth and small-for-gestational-age newborns as the dependent variables additionally adjusted for SARS-CoV-2 infection. RESULTS: A total of 193 (20%) persons were SARS-CoV-2-seropositive, and the overall risks of preterm birth and small-for-gestational-age newborns were 8.4% and 9.8%, respectively. Among birthing per
- Published
- 2022
11. PARIS and SPARTA: Finding the Achilles' Heel of SARS-CoV-2
- Author
-
Rasmussen, AL, Simon, V, Kota, V, Bloomquist, RF, Hanley, HB, Forgacs, D, Pahwa, S, Pallikkuth, S, Miller, LG, Schaenman, J, Yeaman, MR, Manthei, D, Wolf, J, Gaur, AH, Estepp, JH, Srivastava, K, Carreno, JM, Cuevas, F, Ellebedy, AH, Gordon, A, Valdez, R, Cobey, S, Reed, EF, Kolhe, R, Thomas, PG, Schultz-Cherry, S, Ross, TM, Krammer, F, Rasmussen, AL, Simon, V, Kota, V, Bloomquist, RF, Hanley, HB, Forgacs, D, Pahwa, S, Pallikkuth, S, Miller, LG, Schaenman, J, Yeaman, MR, Manthei, D, Wolf, J, Gaur, AH, Estepp, JH, Srivastava, K, Carreno, JM, Cuevas, F, Ellebedy, AH, Gordon, A, Valdez, R, Cobey, S, Reed, EF, Kolhe, R, Thomas, PG, Schultz-Cherry, S, Ross, TM, and Krammer, F
- Abstract
To understand reinfection rates and correlates of protection for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we established eight different longitudinal cohorts in 2020 under the umbrella of the PARIS (Protection Associated with Rapid Immunity to SARS-CoV-2)/SPARTA (SARS SeroPrevalence And Respiratory Tract Assessment) studies. Here, we describe the PARIS/SPARTA cohorts, the harmonized assays and analysis that are performed across the cohorts, as well as case definitions for SARS-CoV-2 infection and reinfection that have been established by the team of PARIS/SPARTA investigators. IMPORTANCE Determining reinfection rates and correlates of protection against SARS-CoV-2 infection induced by both natural infection and vaccination is of high significance for the prevention and control of coronavirus disease 2019 (COVID-19). Furthermore, understanding reinfections or infection after vaccination and the role immune escape plays in these scenarios will inform the need for updates of the current SARS-CoV-2 vaccines and help update guidelines suitable for the postpandemic world.
- Published
- 2022
12. Lung Cancer and Severe Acute Respiratory Syndrome Coronavirus 2 Infection: Identifying Important Knowledge Gaps for Investigation
- Author
-
Rolfo C, Meshulami N, Russo A, Krammer F, García-Sastre A, Mack PC, Gomez JE, Bhardwaj N, Benyounes A, Sirera R, Moore A, Rohs N, Henschke CI, Yankelevitz D, King J, Shyr Y, Bunn PA, Minna JD, and Hirsch FR
- Subjects
COVID-19, Chemotherapy, Immunotherapy, Lung cancer, SARS-CoV-2, Vaccine - Abstract
Patients with lung cancer are especially vulnerable to coronavirus disease 2019 (COVID-19) with a greater than sevenfold higher rate of becoming infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19, a greater than threefold higher hospitalization rate with high complication rates, and an estimated case fatality rate of more than 30%. The reasons for the increased vulnerability are not known. In addition, beyond the direct impact of the pandemic on morbidity and mortality among patients with lung cancer, COVID-19, with its disruption of patient care, has also resulted in substantial impact on lung cancer screening and treatment/management.COVID-19 vaccines are safe and effective in people with lung cancer. On the basis of the available data, patients with lung cancer should continue their course of cancer treatment and get vaccinated against the SARS-CoV-2 virus. For unknown reasons, some patients with lung cancer mount poor antibody responses to vaccination. Thus, boosting vaccination seems urgently indicated in this subgroup of vulnerable patients with lung cancer. Nevertheless, many unanswered questions regarding vaccination in this population remain, including the magnitude, quality, and duration of antibody response and the role of innate and acquired cellular immunities for clinical protection. Additional important knowledge gaps also remain, including the following: how can we best protect patients with lung cancer from developing COVID-19, including managing care in patient with lung cancer and the home environment of patients with lung cancer; are there clinical/treatment demographics and tumor molecular demographics that affect severity of COVID-19 disease in patients with lung cancer; does anticancer treatment affect antibody production and protection; does SARS-CoV-2 infection affect the development/progression of lung cancer; and are special measures and vaccine strategies needed for patients with lung cancer as viral variants of concern emerge.
- Published
- 2022
13. A041 DETECTION OF SARS-COV-2 ANTIBODIES IN IMMUNOGLOBULIN PRODUCTS
- Author
-
Cousins, K., primary, Sano, K., additional, Singh, G., additional, Aboelregal, N., additional, Jeong, S., additional, Ho, H., additional, Krammer, F., additional, and Cunningham-Rundles, C., additional
- Published
- 2021
- Full Text
- View/download PDF
14. OA01.01 Analysis of Lung Cancer Patients Receiving SARS-CoV-2 Vaccines Revealed a Minority Subset With Poor Antibody Responses Relative to Controls
- Author
-
Gomez, J., primary, Krammer, F., additional, Mack, P., additional, Rolfo, C., additional, Rohs, N., additional, Moore, A., additional, King, J., additional, Henschke, C., additional, Yankelevitz, D., additional, Shyr, Y., additional, Taioli, E., additional, Fontoura, B., additional, Brody, R., additional, Gerber, D., additional, Minna, J., additional, Bunn, P.A., additional, Garcia-Sastre, A., additional, and Hirsch, F., additional
- Published
- 2021
- Full Text
- View/download PDF
15. An Assessment of Serological Assays for SARS-CoV-2 as Surrogates for Authentic Virus Neutralization
- Author
-
Perez, DR, Wohlgemuth, N, Whitt, K, Cherry, S, Roubidoux, EK, Lin, C-Y, Allison, KJ, Gowen, A, Freiden, P, Allen, EK, Gaur, AH, Estepp, JH, Tang, L, Mori, T, Hijano, DR, Hakim, H, McGargill, MA, Krammer, F, Whitt, MA, Wolf, J, Thomas, PG, Schultz-Cherry, S, Perez, DR, Wohlgemuth, N, Whitt, K, Cherry, S, Roubidoux, EK, Lin, C-Y, Allison, KJ, Gowen, A, Freiden, P, Allen, EK, Gaur, AH, Estepp, JH, Tang, L, Mori, T, Hijano, DR, Hakim, H, McGargill, MA, Krammer, F, Whitt, MA, Wolf, J, Thomas, PG, and Schultz-Cherry, S
- Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019 and has since caused a global pandemic resulting in millions of cases and deaths. Diagnostic tools and serological assays are critical for controlling the outbreak, especially assays designed to quantitate neutralizing antibody levels, considered the best correlate of protection. As vaccines become increasingly available, it is important to identify reliable methods for measuring neutralizing antibody responses that correlate with authentic virus neutralization but can be performed outside biosafety level 3 (BSL3) laboratories. While many neutralizing assays using pseudotyped virus have been developed, there have been few studies comparing the different assays to each other as surrogates for authentic virus neutralization. Here, we characterized three enzyme-linked immunosorbent assays (ELISAs) and three pseudotyped vesicular stomatitis virus (VSV) neutralization assays and assessed their concordance with authentic virus neutralization. The most accurate assays for predicting authentic virus neutralization were luciferase- and secreted embryonic alkaline phosphatase (SEAP)-expressing pseudotyped virus neutralizations, followed by green fluorescent protein (GFP)-expressing pseudotyped virus neutralization, and then the ELISAs. IMPORTANCE The ongoing COVID-19 pandemic is caused by infection with severe acute respiratory syndrome virus 2 (SARS-CoV-2). Prior infection or vaccination can be detected by the presence of antibodies in the blood. Antibodies in the blood are also considered to be protective against future infections from the same virus. The "gold standard" assay for detecting protective antibodies against SARS-CoV-2 is neutralization of authentic SARS-CoV-2 virus. However, this assay can only be performed under highly restrictive biocontainment conditions. We therefore characterized six antibody-detecting assays for their correlation with authentic virus neutralization. The sign
- Published
- 2021
16. Integrated immune dynamics define correlates of COVID-19 severity and antibody responses
- Author
-
Koutsakos, M, Rowntree, LC, Hensen, L, Chua, BY, van de Sandt, CE, Habel, JR, Zhang, W, Jia, X, Kedzierski, L, Ashhurst, TM, Putri, GH, Marsh-Wakefield, F, Read, MN, Edwards, DN, Clemens, EB, Wong, CY, Mordant, FL, Juno, JA, Amanat, F, Audsley, J, Holmes, NE, Gordon, CL, Smibert, OC, Trubiano, JA, Hughes, CM, Catton, M, Denholm, JT, Tong, SYC, Doolan, DL, Kotsimbos, TC, Jackson, DC, Krammer, F, Godfrey, D, Chung, AW, King, NJC, Lewin, SR, Wheatley, AK, Kent, SJ, Subbarao, K, McMahon, J, Thevarajan, I, Thi, HON, Cheng, AC, Kedzierska, K, Koutsakos, M, Rowntree, LC, Hensen, L, Chua, BY, van de Sandt, CE, Habel, JR, Zhang, W, Jia, X, Kedzierski, L, Ashhurst, TM, Putri, GH, Marsh-Wakefield, F, Read, MN, Edwards, DN, Clemens, EB, Wong, CY, Mordant, FL, Juno, JA, Amanat, F, Audsley, J, Holmes, NE, Gordon, CL, Smibert, OC, Trubiano, JA, Hughes, CM, Catton, M, Denholm, JT, Tong, SYC, Doolan, DL, Kotsimbos, TC, Jackson, DC, Krammer, F, Godfrey, D, Chung, AW, King, NJC, Lewin, SR, Wheatley, AK, Kent, SJ, Subbarao, K, McMahon, J, Thevarajan, I, Thi, HON, Cheng, AC, and Kedzierska, K
- Abstract
SARS-CoV-2 causes a spectrum of COVID-19 disease, the immunological basis of which remains ill defined. We analyzed 85 SARS-CoV-2-infected individuals at acute and/or convalescent time points, up to 102 days after symptom onset, quantifying 184 immunological parameters. Acute COVID-19 presented with high levels of IL-6, IL-18, and IL-10 and broad activation marked by the upregulation of CD38 on innate and adaptive lymphocytes and myeloid cells. Importantly, activated CXCR3+cTFH1 cells in acute COVID-19 significantly correlate with and predict antibody levels and their avidity at convalescence as well as acute neutralization activity. Strikingly, intensive care unit (ICU) patients with severe COVID-19 display higher levels of soluble IL-6, IL-6R, and IL-18, and hyperactivation of innate, adaptive, and myeloid compartments than patients with moderate disease. Our analyses provide a comprehensive map of longitudinal immunological responses in COVID-19 patients and integrate key cellular pathways of complex immune networks underpinning severe COVID-19, providing important insights into potential biomarkers and immunotherapies.
- Published
- 2021
17. Robust correlations across six SARS-CoV-2 serology assays detecting distinct antibody features
- Author
-
Rowntree, LC, Chua, BY, Nicholson, S, Koutsakos, M, Hensen, L, Douros, C, Selva, K, Mordant, FL, Wong, CY, Habel, JR, Zhang, W, Jia, X, Allen, L, Doolan, DL, Jackson, DC, Wheatley, AK, Kent, SJ, Amanat, F, Krammer, F, Subbarao, K, Cheng, AC, Chung, AW, Catton, M, Nguyen, THO, van de Sandt, CE, Kedzierska, K, Rowntree, LC, Chua, BY, Nicholson, S, Koutsakos, M, Hensen, L, Douros, C, Selva, K, Mordant, FL, Wong, CY, Habel, JR, Zhang, W, Jia, X, Allen, L, Doolan, DL, Jackson, DC, Wheatley, AK, Kent, SJ, Amanat, F, Krammer, F, Subbarao, K, Cheng, AC, Chung, AW, Catton, M, Nguyen, THO, van de Sandt, CE, and Kedzierska, K
- Abstract
OBJECTIVES: As the world transitions into a new era of the COVID-19 pandemic in which vaccines become available, there is an increasing demand for rapid reliable serological testing to identify individuals with levels of immunity considered protective by infection or vaccination. METHODS: We used 34 SARS-CoV-2 samples to perform a rapid surrogate virus neutralisation test (sVNT), applicable to many laboratories as it circumvents the need for biosafety level-3 containment. We correlated results from the sVNT with five additional commonly used SARS-CoV-2 serology techniques: the microneutralisation test (MNT), in-house ELISAs, commercial Euroimmun- and Wantai-based ELISAs (RBD, spike and nucleoprotein; IgG, IgA and IgM), antigen-binding avidity, and high-throughput multiplex analyses to profile isotype, subclass and Fc effector binding potential. We correlated antibody levels with antibody-secreting cell (ASC) and circulatory T follicular helper (cTfh) cell numbers. RESULTS: Antibody data obtained with commercial ELISAs closely reflected results using in-house ELISAs against RBD and spike. A correlation matrix across ten measured ELISA parameters revealed positive correlations for all factors. The frequency of inhibition by rapid sVNT strongly correlated with spike-specific IgG and IgA titres detected by both commercial and in-house ELISAs, and MNT titres. Multiplex analyses revealed strongest correlations between IgG, IgG1, FcR and C1q specific to spike and RBD. Acute cTfh-type 1 cell numbers correlated with spike and RBD-specific IgG antibodies measured by ELISAs and sVNT. CONCLUSION: Our comprehensive analyses provide important insights into SARS-CoV-2 humoral immunity across distinct serology assays and their applicability for specific research and/or diagnostic questions to assess SARS-CoV-2-specific humoral responses.
- Published
- 2021
18. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19
- Author
-
Zhang, Q., Liu, Z., Moncada-Velez, M., Chen, J., Ogishi, M., Bigio, B., Yang, R., Arias, A.A., Zhou, Q., Han, J.E., Ugurbil, A.C., Zhang, P., Rapaport, F., Li, J., Spaan, A.N., Boisson, B., Boisson-Dupuis, S., Bustamante, J., Puel, A., Ciancanelli, M.J., Zhang, S.Y., Béziat, V., Jouanguy, E., Abel, L., Cobat, A., Casanova, J.L., Bastard, P., Korol, C., Rosain, J., Philippot, Q., Chbihi, M., Lorenzo, L., Bizien, L., Neehus, A.L., Kerner, G., Seeleuthner, Y., Manry, J., Le Voyer, T., Le Pen, J., Schneider, W.M., Razooky, B.S., Hoffmann, H.H., Michailidis, E., Rice, C.M., Sabli, I.K.D., Hodeib, S., Sancho-Shimizu, V., Bilguvar, K., Ye, J., Maniatis, T., Bolze, A., Zhang, Y., Notarangelo, L.D., Su, H.C., Onodi, F., Korniotis, S., Karpf, L., Soumelis, V., Bonnet-Madin, L., Amara, A., Dorgham, Karim, Gorochov, G., Smith, N., Duffy, D., Moens, L., Meyts, I., Meade, P., Garcia-Sastre, Adolfo, Krammer, F., Corneau, A., Masson, C., Schmitt, Y., Schluter, A., Pujol, A., Khan, T., Marr, N., Fellay, Jacques, Roussel, L., Vinh, D.C., Shahrooei, M., Alosaimi, M.F., Alsohime, F., Hasanato, R., Mansouri, D., Al-Saud, H., Almourfi, F., Al-Mulla, F., Al-Muhsen, S.Z., Al Turki, S., van de Beek, D., Biondi, A., Bettini, L.R., D'Angio, M., Bonfanti, P., Imberti, L., Sottini, A., Paghera, S., Quiros-Roldan, E., Rossi, C., Oler, A.J., Tompkins, M.F., Alba, C., Dalgard, C.L., Vandernoot, I., Smits, G., Goffard, J.C., Migeotte, I., Haerynck, F., Soler-Palacín, P., Martin-Nalda, A., Colobrán Oriol, Roger, Morange, P.E., Keles, S., Çölkesen, F., Ozcelik, T., Yasar, K.K., Senoglu, S., Karabela, Ş.N., Rodríguez-Gallego, C., Novelli, G., Hraiech, S., Tandjaoui-Lambiotte, Y., Duval, X., Laouénan, C., Snow, A., Milner, J.D., Mogensen, T.H., Nussenzweig, M., Lifton, R.P., Foti, Giuseppe, Bellani, G., Citerio, G., Contro, E., Pesci, A., Valsecchi, M.G., Cazzaniga, M., Abad Capa, Jorge, Blanco, I., Rodrigo, C., Aguilera-Albesa, S., Akcan, O.M., Darazam, I.A., Aldave, J.C., Ramos, M.A., Nadji, S.A., Alkan, G., Allardet-Servent, J., Allende, L.M., Alsina, L., Alyanakian, M.A., Amador-Borrero, B., Mouly, S., Sene, D., Amoura, Z., Mathian, A., Antolí, A., Blanch, G.R., Riera, J.S., Moreno, X.S., Arslan, S., Assant, S., Auguet, T., Azot, A., Bajolle, F., Lévy, R., Oualha, M., Baldolli, A., Ballester, M., Feldman, H.B., Barrou, B., Beurton, A., Bilbao, A., Blanchard-Rohner, G., Blandinières, A., Rivet, N., Blazquez-Gamero, D., Bloomfield, M., Bolivar-Prados, Mireia, Clavé, P., Bosteels, C., Lambrecht, B.N., van Braeckel, E., Bousfiha, A.A., Bouvattier, C., Vincent, A., Boyarchuk, O., Bueno, M.R.P., Castro, M.V., Matos, L.R.B., Zatz, M., Agra, J.J.C., Calimli, S., Capra, R., Carrabba, M., Fabio, G., Casasnovas, Carlos, Vélez-Santamaria, V., Caseris, M., Falck, A., Poncelet, G., Castelle, M., Castelli, F., de Vera, M.C., Catherinot, E., Chalumeau, M., Toubiana, J., Charbit, B., Li, Z., Pellegrini, S., Cheng, M.P., Clotet, B., Codina, A., Colkesen, F., Comarmond, C., Dalmau, D., Darley, D.R., Dauby, N., Dauger, S., Le Bourgeois, F., Levy, M., de Pontual, L., Dehban, A., Delplancq, G., Demoule, A., Diehl, J.L., Dobbelaere, S., Durand, S., Mircher, C., Rebillat, A.S., Vilaire, M.E., Eldars, W., Elgamal, M., Elnagdy, M.H., Emiroglu, M., Erdeniz, E.H., Aytekin, S.E., Euvrard, R., Evcen, R., Faivre, L., Fartoukh, M., Faure, M., Arquero, M.F., Flores, Carlos, Francois, B., Fumadó, V., Fusco, F., Ursini, M.V., Solis, B.G., de Diego, R.P., van Den Rym, A.M., Gaussem, P., Gil-Herrera, J., Gilardin, L., Alarcon, M.G., Girona-Alarcón, M., Gok, F., Yosunkaya, A., Thy, M., van Agtmael, M., Bomers, M., Chouchane, O., Geerlings, S., Goorhuis, B., Grobusch, M.P., Harris, V., Hermans, S.M., Hovius, J.W., Nellen, J., Peters, E., van der Poll, T., Prins, J.M., Reijnders, T., Schinkel, M., Sigaloff, K., Stijnis, C.S., van der Valk, M., van Vugt, M., Joost Wiersinga, W., Algera, A.G., van Baarle, F., Bos, Lieuwe D, Botta, M., de Bruin, S., Bulle, E., Elbers, P., Fleuren, L., Girbes, A., Hagens, L., Heunks, L., Horn, J., van Mourik, N., Paulus, F., Raasveld, J., Schultz, M.J., Smit, M., Stilma, Willemke, Thoral, P., Tsonas, A., de Vries, H., Bax, D., Cloherty, A., Beudel, M., Brouwer, M.C., Koning, R., Bogaard, H.J., de Brabander, J., de Bree, G., Bugiani, M., Geerts, B., Hollmann, M.W., Preckel, B., Veelo, D., Geijtenbeek, T., Hafkamp, F., Hamann, J., Hemke, R., de Jong, M.D., Schuurman, A., Teunissen, C., Vlaar, A.P.J., Wouters, D., Zwinderman, A.H., Aiuti, A., Muhsen, S.A., Anderson, M.S., Bogunovic, D., Itan, Y., Cirulli, E., Barrett, K.S., Washington, N., Bondarenko, A., Brodin, P., Bryceson, Y., Bustamante, C.D., Butte, M., Casari, G., Chakravorty, S., Christodoulou, J., Le Mestre, S., Condino-Neto, A., Cooper, M.A., David, A., DeRisi, J.L., Desai, M., Drolet, B.A., Espinosa, S., Franco, J.L., Gregersen, P.K., Hagin, D., Halwani, R., Heath, J., Henrickson, S.E., Hsieh, E., Imai, K., Karamitros, T., Kisand, K., Ku, C.L., Lau, Y.L., Ling, Y., Lucas, C.L., Marodi, L., Milner, J., Mironska, K., Morio, T., Novelli, A., O'Farrelly, C., Okada, S., Planas, A.M., Prando, C., Quintana-Murci, L., Renia, L., Renieri, A., Sankaran, V., Tangye, S., Turvey, S., Uddin, F., Uddin, M.J., Vazquez, S.E., von Bernuth, H., Zawadzki, P., Jing, H., Tung, W., Meguro, K., Shaw, E., Shafer, S., Zheng, L., Zhang, Z., Kubo, S., Chauvin, S.D., Lenardo, M., Luthers, C.R., Bauman, B.M., Lack, J., Karlins, E., Hupalo, D.M., Rosenberger, J., Sukumar, G., Wilkerson, M.D., Zhang, X., Universitat Autònoma Barcelona, Zhang, Q., Liu, Z., Moncada-Velez, M., Chen, J., Ogishi, M., Bigio, B., Yang, R., Arias, A.A., Zhou, Q., Han, J.E., Ugurbil, A.C., Zhang, P., Rapaport, F., Li, J., Spaan, A.N., Boisson, B., Boisson-Dupuis, S., Bustamante, J., Puel, A., Ciancanelli, M.J., Zhang, S.Y., Béziat, V., Jouanguy, E., Abel, L., Cobat, A., Casanova, J.L., Bastard, P., Korol, C., Rosain, J., Philippot, Q., Chbihi, M., Lorenzo, L., Bizien, L., Neehus, A.L., Kerner, G., Seeleuthner, Y., Manry, J., Le Voyer, T., Le Pen, J., Schneider, W.M., Razooky, B.S., Hoffmann, H.H., Michailidis, E., Rice, C.M., Sabli, I.K.D., Hodeib, S., Sancho-Shimizu, V., Bilguvar, K., Ye, J., Maniatis, T., Bolze, A., Zhang, Y., Notarangelo, L.D., Su, H.C., Onodi, F., Korniotis, S., Karpf, L., Soumelis, V., Bonnet-Madin, L., Amara, A., Dorgham, Karim, Gorochov, G., Smith, N., Duffy, D., Moens, L., Meyts, I., Meade, P., Garcia-Sastre, Adolfo, Krammer, F., Corneau, A., Masson, C., Schmitt, Y., Schluter, A., Pujol, A., Khan, T., Marr, N., Fellay, Jacques, Roussel, L., Vinh, D.C., Shahrooei, M., Alosaimi, M.F., Alsohime, F., Hasanato, R., Mansouri, D., Al-Saud, H., Almourfi, F., Al-Mulla, F., Al-Muhsen, S.Z., Al Turki, S., van de Beek, D., Biondi, A., Bettini, L.R., D'Angio, M., Bonfanti, P., Imberti, L., Sottini, A., Paghera, S., Quiros-Roldan, E., Rossi, C., Oler, A.J., Tompkins, M.F., Alba, C., Dalgard, C.L., Vandernoot, I., Smits, G., Goffard, J.C., Migeotte, I., Haerynck, F., Soler-Palacín, P., Martin-Nalda, A., Colobrán Oriol, Roger, Morange, P.E., Keles, S., Çölkesen, F., Ozcelik, T., Yasar, K.K., Senoglu, S., Karabela, Ş.N., Rodríguez-Gallego, C., Novelli, G., Hraiech, S., Tandjaoui-Lambiotte, Y., Duval, X., Laouénan, C., Snow, A., Milner, J.D., Mogensen, T.H., Nussenzweig, M., Lifton, R.P., Foti, Giuseppe, Bellani, G., Citerio, G., Contro, E., Pesci, A., Valsecchi, M.G., Cazzaniga, M., Abad Capa, Jorge, Blanco, I., Rodrigo, C., Aguilera-Albesa, S., Akcan, O.M., Darazam, I.A., Aldave, J.C., Ramos, M.A., Nadji, S.A., Alkan, G., Allardet-Servent, J., Allende, L.M., Alsina, L., Alyanakian, M.A., Amador-Borrero, B., Mouly, S., Sene, D., Amoura, Z., Mathian, A., Antolí, A., Blanch, G.R., Riera, J.S., Moreno, X.S., Arslan, S., Assant, S., Auguet, T., Azot, A., Bajolle, F., Lévy, R., Oualha, M., Baldolli, A., Ballester, M., Feldman, H.B., Barrou, B., Beurton, A., Bilbao, A., Blanchard-Rohner, G., Blandinières, A., Rivet, N., Blazquez-Gamero, D., Bloomfield, M., Bolivar-Prados, Mireia, Clavé, P., Bosteels, C., Lambrecht, B.N., van Braeckel, E., Bousfiha, A.A., Bouvattier, C., Vincent, A., Boyarchuk, O., Bueno, M.R.P., Castro, M.V., Matos, L.R.B., Zatz, M., Agra, J.J.C., Calimli, S., Capra, R., Carrabba, M., Fabio, G., Casasnovas, Carlos, Vélez-Santamaria, V., Caseris, M., Falck, A., Poncelet, G., Castelle, M., Castelli, F., de Vera, M.C., Catherinot, E., Chalumeau, M., Toubiana, J., Charbit, B., Li, Z., Pellegrini, S., Cheng, M.P., Clotet, B., Codina, A., Colkesen, F., Comarmond, C., Dalmau, D., Darley, D.R., Dauby, N., Dauger, S., Le Bourgeois, F., Levy, M., de Pontual, L., Dehban, A., Delplancq, G., Demoule, A., Diehl, J.L., Dobbelaere, S., Durand, S., Mircher, C., Rebillat, A.S., Vilaire, M.E., Eldars, W., Elgamal, M., Elnagdy, M.H., Emiroglu, M., Erdeniz, E.H., Aytekin, S.E., Euvrard, R., Evcen, R., Faivre, L., Fartoukh, M., Faure, M., Arquero, M.F., Flores, Carlos, Francois, B., Fumadó, V., Fusco, F., Ursini, M.V., Solis, B.G., de Diego, R.P., van Den Rym, A.M., Gaussem, P., Gil-Herrera, J., Gilardin, L., Alarcon, M.G., Girona-Alarcón, M., Gok, F., Yosunkaya, A., Thy, M., van Agtmael, M., Bomers, M., Chouchane, O., Geerlings, S., Goorhuis, B., Grobusch, M.P., Harris, V., Hermans, S.M., Hovius, J.W., Nellen, J., Peters, E., van der Poll, T., Prins, J.M., Reijnders, T., Schinkel, M., Sigaloff, K., Stijnis, C.S., van der Valk, M., van Vugt, M., Joost Wiersinga, W., Algera, A.G., van Baarle, F., Bos, Lieuwe D, Botta, M., de Bruin, S., Bulle, E., Elbers, P., Fleuren, L., Girbes, A., Hagens, L., Heunks, L., Horn, J., van Mourik, N., Paulus, F., Raasveld, J., Schultz, M.J., Smit, M., Stilma, Willemke, Thoral, P., Tsonas, A., de Vries, H., Bax, D., Cloherty, A., Beudel, M., Brouwer, M.C., Koning, R., Bogaard, H.J., de Brabander, J., de Bree, G., Bugiani, M., Geerts, B., Hollmann, M.W., Preckel, B., Veelo, D., Geijtenbeek, T., Hafkamp, F., Hamann, J., Hemke, R., de Jong, M.D., Schuurman, A., Teunissen, C., Vlaar, A.P.J., Wouters, D., Zwinderman, A.H., Aiuti, A., Muhsen, S.A., Anderson, M.S., Bogunovic, D., Itan, Y., Cirulli, E., Barrett, K.S., Washington, N., Bondarenko, A., Brodin, P., Bryceson, Y., Bustamante, C.D., Butte, M., Casari, G., Chakravorty, S., Christodoulou, J., Le Mestre, S., Condino-Neto, A., Cooper, M.A., David, A., DeRisi, J.L., Desai, M., Drolet, B.A., Espinosa, S., Franco, J.L., Gregersen, P.K., Hagin, D., Halwani, R., Heath, J., Henrickson, S.E., Hsieh, E., Imai, K., Karamitros, T., Kisand, K., Ku, C.L., Lau, Y.L., Ling, Y., Lucas, C.L., Marodi, L., Milner, J., Mironska, K., Morio, T., Novelli, A., O'Farrelly, C., Okada, S., Planas, A.M., Prando, C., Quintana-Murci, L., Renia, L., Renieri, A., Sankaran, V., Tangye, S., Turvey, S., Uddin, F., Uddin, M.J., Vazquez, S.E., von Bernuth, H., Zawadzki, P., Jing, H., Tung, W., Meguro, K., Shaw, E., Shafer, S., Zheng, L., Zhang, Z., Kubo, S., Chauvin, S.D., Lenardo, M., Luthers, C.R., Bauman, B.M., Lack, J., Karlins, E., Hupalo, D.M., Rosenberger, J., Sukumar, G., Wilkerson, M.D., Zhang, X., and Universitat Autònoma Barcelona
- Abstract
Afegiu 653 1_, Clinical outcome upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ranges from silent infection to lethal coronavirus disease 2019 (COVID-19). We have found an enrichment in rare variants predicted to be loss-of-function (LOF) at the 13 human loci known to govern Toll-like receptor 3 (TLR3)- and interferon regulatory factor 7 (IRF7)-dependent type I interferon (IFN) immunity to influenza virus in 659 patients with life-threatening COVID-19 pneumonia relative to 534 subjects with asymptomatic or benign infection. By testing these and other rare variants at these 13 loci, we experimentally defined LOF variants underlying autosomal-recessive or autosomal-dominant deficiencies in 23 patients (3.5%) 17 to 77 years of age. We show that human fibroblasts with mutations affecting this circuit are vulnerable to SARS-CoV-2. Inborn errors of TLR3- and IRF7-dependent type I IFN immunity can underlie life-threatening COVID-19 pneumonia in patients with no prior severe infection.
- Published
- 2020
19. Development and Assessment of a Pooled Serum as Candidate Standard to Measure Influenza A Virus Group 1 Hemagglutinin Stalk-Reactive Antibodies.
- Author
-
Carreño, JM, McDonald, JU, Hurst, T, Rigsby, P, Atkinson, E, Charles, L, Nachbagauer, R, Behzadi, MA, Strohmeier, S, Coughlan, L, Aydillo, T, Brandenburg, B, García-Sastre, A, Kaszas, K, Levine, MZ, Manenti, A, McDermott, AB, Montomoli, E, Muchene, L, Narpala, SR, Perera, RAPM, Salisch, NC, Valkenburg, SA, Zhou, F, Engelhardt, OG, Krammer, F, Carreño, JM, McDonald, JU, Hurst, T, Rigsby, P, Atkinson, E, Charles, L, Nachbagauer, R, Behzadi, MA, Strohmeier, S, Coughlan, L, Aydillo, T, Brandenburg, B, García-Sastre, A, Kaszas, K, Levine, MZ, Manenti, A, McDermott, AB, Montomoli, E, Muchene, L, Narpala, SR, Perera, RAPM, Salisch, NC, Valkenburg, SA, Zhou, F, Engelhardt, OG, and Krammer, F
- Abstract
The stalk domain of the hemagglutinin has been identified as a target for induction of protective antibody responses due to its high degree of conservation among numerous influenza subtypes and strains. However, current assays to measure stalk-based immunity are not standardized. Hence, harmonization of assay readouts would help to compare experiments conducted in different laboratories and increase confidence in results. Here, serum samples from healthy individuals (n = 110) were screened using a chimeric cH6/1 hemagglutinin enzyme-linked immunosorbent assay (ELISA) that measures stalk-reactive antibodies. We identified samples with moderate to high IgG anti-stalk antibody levels. Likewise, screening of the samples using the mini-hemagglutinin (HA) headless construct #4900 and analysis of the correlation between the two assays confirmed the presence and specificity of anti-stalk antibodies. Additionally, samples were characterized by a cH6/1N5 virus-based neutralization assay, an antibody-dependent cell-mediated cytotoxicity (ADCC) assay, and competition ELISAs, using the stalk-reactive monoclonal antibodies KB2 (mouse) and CR9114 (human). A "pooled serum" (PS) consisting of a mixture of selected serum samples was generated. The PS exhibited high levels of stalk-reactive antibodies, had a cH6/1N5-based neutralization titer of 320, and contained high levels of stalk-specific antibodies with ADCC activity. The PS, along with blinded samples of varying anti-stalk antibody titers, was distributed to multiple collaborators worldwide in a pilot collaborative study. The samples were subjected to different assays available in the different laboratories, to measure either binding or functional properties of the stalk-reactive antibodies contained in the serum. Results from binding and neutralization assays were analyzed to determine whether use of the PS as a standard could lead to better agreement between laboratories. The work presented here points the way towards the dev
- Published
- 2020
20. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19
- Author
-
Zhang, Q, Bastard, P, Liu, Z, Le Pen, J, Moncada-Velez, M, Chen, J, Ogishi, M, Sabli, I, Hodeib, S, Korol, C, Rosain, J, Bilguvar, K, Ye, J, Bolze, A, Bigio, B, Yang, R, Arias, A, Zhou, Q, Zhang, Y, Onodi, F, Korniotis, S, Karpf, L, Philippot, Q, Chbihi, M, Bonnet-Madin, L, Dorgham, K, Smith, N, Schneider, W, Razooky, B, Hoffmann, H, Michailidis, E, Moens, L, Han, J, Lorenzo, L, Bizien, L, Meade, P, Neehus, A, Ugurbil, A, Corneau, A, Kerner, G, Zhang, P, Rapaport, F, Seeleuthner, Y, Manry, J, Masson, C, Schmitt, Y, Schlüter, A, Le Voyer, T, Khan, T, Li, J, Fellay, J, Roussel, L, Shahrooei, M, Alosaimi, M, Mansouri, D, Al-Saud, H, Al-Mulla, F, Almourfi, F, Al-Muhsen, S, Alsohime, F, Al Turki, S, Hasanato, R, van de Beek, D, Biondi, A, Bettini, L, D'Angio, M, Bonfanti, P, Imberti, L, Sottini, A, Paghera, S, Quiros-Roldan, E, Rossi, C, Oler, A, Tompkins, M, Alba, C, Vandernoot, I, Goffard, J, Smits, G, Migeotte, I, Haerynck, F, Soler-Palacin, P, Martin-Nalda, A, Colobran, R, Morange, P, Keles, S, Çölkesen, F, Ozcelik, T, Yasar, K, Senoglu, S, Karabela, Ş, Gallego, C, Novelli, G, Hraiech, S, Tandjaoui-Lambiotte, Y, Duval, X, Laouénan, C, Snow, A, Dalgard, C, Milner, J, Vinh, D, Mogensen, T, Marr, N, Spaan, A, Boisson, B, Boisson-Dupuis, S, Bustamante, J, Puel, A, Ciancanelli, M, Meyts, I, Maniatis, T, Soumelis, V, Amara, A, Nussenzweig, M, García-Sastre, A, Krammer, F, Pujol, A, Duffy, D, Lifton, R, Zhang, S, Gorochov, G, Béziat, V, Jouanguy, E, Sancho-Shimizu, V, Rice, C, Abel, L, Notarangelo, L, Cobat, A, Su, H, Casanova, J, Pesci, A, Zhang, Qian, Bastard, Paul, Liu, Zhiyong, Le Pen, Jérémie, Moncada-Velez, Marcela, Chen, Jie, Ogishi, Masato, Sabli, Ira K D, Hodeib, Stephanie, Korol, Cecilia, Rosain, Jérémie, Bilguvar, Kaya, Ye, Junqiang, Bolze, Alexandre, Bigio, Benedetta, Yang, Rui, Arias, Andrés Augusto, Zhou, Qinhua, Zhang, Yu, Onodi, Fanny, Korniotis, Sarantis, Karpf, Léa, Philippot, Quentin, Chbihi, Marwa, Bonnet-Madin, Lucie, Dorgham, Karim, Smith, Nikaïa, Schneider, William M, Razooky, Brandon S, Hoffmann, Hans-Heinrich, Michailidis, Eleftherios, Moens, Leen, Han, Ji Eun, Lorenzo, Lazaro, Bizien, Lucy, Meade, Philip, Neehus, Anna-Lena, Ugurbil, Aileen Camille, Corneau, Aurélien, Kerner, Gaspard, Zhang, Peng, Rapaport, Franck, Seeleuthner, Yoann, Manry, Jeremy, Masson, Cecile, Schmitt, Yohann, Schlüter, Agatha, Le Voyer, Tom, Khan, Taushif, Li, Juan, Fellay, Jacques, Roussel, Lucie, Shahrooei, Mohammad, Alosaimi, Mohammed F, Mansouri, Davood, Al-Saud, Haya, Al-Mulla, Fahd, Almourfi, Feras, Al-Muhsen, Saleh Zaid, Alsohime, Fahad, Al Turki, Saeed, Hasanato, Rana, van de Beek, Diederik, Biondi, Andrea, Bettini, Laura Rachele, D'Angio, Mariella, Bonfanti, Paolo, Imberti, Luisa, Sottini, Alessandra, Paghera, Simone, Quiros-Roldan, Eugenia, Rossi, Camillo, Oler, Andrew J, Tompkins, Miranda F, Alba, Camille, Vandernoot, Isabelle, Goffard, Jean-Christophe, Smits, Guillaume, Migeotte, Isabelle, Haerynck, Filomeen, Soler-Palacin, Pere, Martin-Nalda, Andrea, Colobran, Roger, Morange, Pierre-Emmanuel, Keles, Sevgi, Çölkesen, Fatma, Ozcelik, Tayfun, Yasar, Kadriye Kart, Senoglu, Sevtap, Karabela, Şemsi Nur, Gallego, Carlos Rodríguez, Novelli, Giuseppe, Hraiech, Sami, Tandjaoui-Lambiotte, Yacine, Duval, Xavier, Laouénan, Cédric, Snow, Andrew L, Dalgard, Clifton L, Milner, Joshua, Vinh, Donald C, Mogensen, Trine H, Marr, Nico, Spaan, András N, Boisson, Bertrand, Boisson-Dupuis, Stéphanie, Bustamante, Jacinta, Puel, Anne, Ciancanelli, Michael, Meyts, Isabelle, Maniatis, Tom, Soumelis, Vassili, Amara, Ali, Nussenzweig, Michel, García-Sastre, Adolfo, Krammer, Florian, Pujol, Aurora, Duffy, Darragh, Lifton, Richard, Zhang, Shen-Ying, Gorochov, Guy, Béziat, Vivien, Jouanguy, Emmanuelle, Sancho-Shimizu, Vanessa, Rice, Charles M, Abel, Laurent, Notarangelo, Luigi D, Cobat, Aurélie, Su, Helen C, Casanova, Jean-Laurent, Pesci, Alberto, Zhang, Q, Bastard, P, Liu, Z, Le Pen, J, Moncada-Velez, M, Chen, J, Ogishi, M, Sabli, I, Hodeib, S, Korol, C, Rosain, J, Bilguvar, K, Ye, J, Bolze, A, Bigio, B, Yang, R, Arias, A, Zhou, Q, Zhang, Y, Onodi, F, Korniotis, S, Karpf, L, Philippot, Q, Chbihi, M, Bonnet-Madin, L, Dorgham, K, Smith, N, Schneider, W, Razooky, B, Hoffmann, H, Michailidis, E, Moens, L, Han, J, Lorenzo, L, Bizien, L, Meade, P, Neehus, A, Ugurbil, A, Corneau, A, Kerner, G, Zhang, P, Rapaport, F, Seeleuthner, Y, Manry, J, Masson, C, Schmitt, Y, Schlüter, A, Le Voyer, T, Khan, T, Li, J, Fellay, J, Roussel, L, Shahrooei, M, Alosaimi, M, Mansouri, D, Al-Saud, H, Al-Mulla, F, Almourfi, F, Al-Muhsen, S, Alsohime, F, Al Turki, S, Hasanato, R, van de Beek, D, Biondi, A, Bettini, L, D'Angio, M, Bonfanti, P, Imberti, L, Sottini, A, Paghera, S, Quiros-Roldan, E, Rossi, C, Oler, A, Tompkins, M, Alba, C, Vandernoot, I, Goffard, J, Smits, G, Migeotte, I, Haerynck, F, Soler-Palacin, P, Martin-Nalda, A, Colobran, R, Morange, P, Keles, S, Çölkesen, F, Ozcelik, T, Yasar, K, Senoglu, S, Karabela, Ş, Gallego, C, Novelli, G, Hraiech, S, Tandjaoui-Lambiotte, Y, Duval, X, Laouénan, C, Snow, A, Dalgard, C, Milner, J, Vinh, D, Mogensen, T, Marr, N, Spaan, A, Boisson, B, Boisson-Dupuis, S, Bustamante, J, Puel, A, Ciancanelli, M, Meyts, I, Maniatis, T, Soumelis, V, Amara, A, Nussenzweig, M, García-Sastre, A, Krammer, F, Pujol, A, Duffy, D, Lifton, R, Zhang, S, Gorochov, G, Béziat, V, Jouanguy, E, Sancho-Shimizu, V, Rice, C, Abel, L, Notarangelo, L, Cobat, A, Su, H, Casanova, J, Pesci, A, Zhang, Qian, Bastard, Paul, Liu, Zhiyong, Le Pen, Jérémie, Moncada-Velez, Marcela, Chen, Jie, Ogishi, Masato, Sabli, Ira K D, Hodeib, Stephanie, Korol, Cecilia, Rosain, Jérémie, Bilguvar, Kaya, Ye, Junqiang, Bolze, Alexandre, Bigio, Benedetta, Yang, Rui, Arias, Andrés Augusto, Zhou, Qinhua, Zhang, Yu, Onodi, Fanny, Korniotis, Sarantis, Karpf, Léa, Philippot, Quentin, Chbihi, Marwa, Bonnet-Madin, Lucie, Dorgham, Karim, Smith, Nikaïa, Schneider, William M, Razooky, Brandon S, Hoffmann, Hans-Heinrich, Michailidis, Eleftherios, Moens, Leen, Han, Ji Eun, Lorenzo, Lazaro, Bizien, Lucy, Meade, Philip, Neehus, Anna-Lena, Ugurbil, Aileen Camille, Corneau, Aurélien, Kerner, Gaspard, Zhang, Peng, Rapaport, Franck, Seeleuthner, Yoann, Manry, Jeremy, Masson, Cecile, Schmitt, Yohann, Schlüter, Agatha, Le Voyer, Tom, Khan, Taushif, Li, Juan, Fellay, Jacques, Roussel, Lucie, Shahrooei, Mohammad, Alosaimi, Mohammed F, Mansouri, Davood, Al-Saud, Haya, Al-Mulla, Fahd, Almourfi, Feras, Al-Muhsen, Saleh Zaid, Alsohime, Fahad, Al Turki, Saeed, Hasanato, Rana, van de Beek, Diederik, Biondi, Andrea, Bettini, Laura Rachele, D'Angio, Mariella, Bonfanti, Paolo, Imberti, Luisa, Sottini, Alessandra, Paghera, Simone, Quiros-Roldan, Eugenia, Rossi, Camillo, Oler, Andrew J, Tompkins, Miranda F, Alba, Camille, Vandernoot, Isabelle, Goffard, Jean-Christophe, Smits, Guillaume, Migeotte, Isabelle, Haerynck, Filomeen, Soler-Palacin, Pere, Martin-Nalda, Andrea, Colobran, Roger, Morange, Pierre-Emmanuel, Keles, Sevgi, Çölkesen, Fatma, Ozcelik, Tayfun, Yasar, Kadriye Kart, Senoglu, Sevtap, Karabela, Şemsi Nur, Gallego, Carlos Rodríguez, Novelli, Giuseppe, Hraiech, Sami, Tandjaoui-Lambiotte, Yacine, Duval, Xavier, Laouénan, Cédric, Snow, Andrew L, Dalgard, Clifton L, Milner, Joshua, Vinh, Donald C, Mogensen, Trine H, Marr, Nico, Spaan, András N, Boisson, Bertrand, Boisson-Dupuis, Stéphanie, Bustamante, Jacinta, Puel, Anne, Ciancanelli, Michael, Meyts, Isabelle, Maniatis, Tom, Soumelis, Vassili, Amara, Ali, Nussenzweig, Michel, García-Sastre, Adolfo, Krammer, Florian, Pujol, Aurora, Duffy, Darragh, Lifton, Richard, Zhang, Shen-Ying, Gorochov, Guy, Béziat, Vivien, Jouanguy, Emmanuelle, Sancho-Shimizu, Vanessa, Rice, Charles M, Abel, Laurent, Notarangelo, Luigi D, Cobat, Aurélie, Su, Helen C, Casanova, Jean-Laurent, and Pesci, Alberto
- Abstract
Clinical outcome upon infection with SARS-CoV-2 ranges from silent infection to lethal COVID-19. We have found an enrichment in rare variants predicted to be loss-of-function (LOF) at the 13 human loci known to govern TLR3- and IRF7-dependent type I interferon (IFN) immunity to influenza virus, in 659 patients with life-threatening COVID-19 pneumonia, relative to 534 subjects with asymptomatic or benign infection. By testing these and other rare variants at these 13 loci, we experimentally define LOF variants in 23 patients (3.5%), aged 17 to 77 years, underlying autosomal recessive or dominant deficiencies. We show that human fibroblasts with mutations affecting this pathway are vulnerable to SARS-CoV-2. Inborn errors of TLR3- and IRF7-dependent type I IFN immunity can underlie life-threatening COVID-19 pneumonia in patients with no prior severe infection.
- Published
- 2020
21. Analysis of the vaccine-induced influenza B virus hemagglutinin-specific antibody dependent cellular cytotoxicity response
- Author
-
de Vries, Rory, Nieuwkoop, Nella, Krammer, F, Hu, B, Rimmelzwaan, Guus, de Vries, Rory, Nieuwkoop, Nella, Krammer, F, Hu, B, and Rimmelzwaan, Guus
- Published
- 2020
22. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19
- Author
-
Universitat Rovira i Virgili, Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J, Ogishi M, Sabli IKD, Hodeib S, Korol C, Rosain J, Bilguvar K, Ye J, Bolze A, Bigio B, Yang R, Arias AA, Zhou Q, Zhang Y, Onodi F, Korniotis S, Karpf L, Philippot Q, Chbihi M, Bonnet-Madin L, Dorgham K, Smith N, Schneider WM, Razooky BS, Hoffmann HH, Michailidis E, Moens L, Han JE, Lorenzo L, Bizien L, Meade P, Neehus AL, Ugurbil AC, Corneau A, Kerner G, Zhang P, Rapaport F, Seeleuthner Y, Manry J, Masson C, Schmitt Y, Schlüter A, Le Voyer T, Khan T, Li J, Fellay J, Roussel L, Shahrooei M, Alosaimi MF, Mansouri D, Al-Saud H, Al-Mulla F, Almourfi F, Al-Muhsen SZ, Alsohime F, Al Turki S, Hasanato R, van de Beek D, Biondi A, Bettini LR, D'Angio M, Bonfanti P, Imberti L, Sottini A, Paghera S, Quiros-Roldan E, Rossi C, Oler AJ, Tompkins MF, Alba C, Vandernoot I, Goffard JC, Smits G, Migeotte I, Haerynck F, Soler-Palacin P, Martin-Nalda A, Colobran R, Morange PE, Keles S, Çölkesen F, Ozcelik T, Yasar KK, Senoglu S, Karabela ?N, Gallego CR, Novelli G, Hraiech S, Tandjaoui-Lambiotte Y, Duval X, Laouénan C,, Snow AL, Dalgard CL, Milner J, Vinh DC, Mogensen TH, Marr N, Spaan AN, Boisson B, Boisson-Dupuis S, Bustamante J, Puel A, Ciancanelli M, Meyts I, Maniatis T, Soumelis V, Amara A, Nussenzweig M, García-Sastre A, Krammer F, Pujol A, Duffy D, Lifton R, Zhang SY, Gorochov G, Béziat V, Jouanguy E, Sancho-Shimizu V, Rice CM, Abel L, Notarangelo LD, Cobat A, Su HC, Casanova JL COVID-STORM Clinicians, COVID Clinicians, Imagine COVID Group, French COVID Cohort Study Group, CoV-Contact Cohort, Amsterdam UMC Covid-19, Biobank, COVID Human Genetic Effort, NIAID-USUHS, TAGC COVID Immunity Group, Universitat Rovira i Virgili, and Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J, Ogishi M, Sabli IKD, Hodeib S, Korol C, Rosain J, Bilguvar K, Ye J, Bolze A, Bigio B, Yang R, Arias AA, Zhou Q, Zhang Y, Onodi F, Korniotis S, Karpf L, Philippot Q, Chbihi M, Bonnet-Madin L, Dorgham K, Smith N, Schneider WM, Razooky BS, Hoffmann HH, Michailidis E, Moens L, Han JE, Lorenzo L, Bizien L, Meade P, Neehus AL, Ugurbil AC, Corneau A, Kerner G, Zhang P, Rapaport F, Seeleuthner Y, Manry J, Masson C, Schmitt Y, Schlüter A, Le Voyer T, Khan T, Li J, Fellay J, Roussel L, Shahrooei M, Alosaimi MF, Mansouri D, Al-Saud H, Al-Mulla F, Almourfi F, Al-Muhsen SZ, Alsohime F, Al Turki S, Hasanato R, van de Beek D, Biondi A, Bettini LR, D'Angio M, Bonfanti P, Imberti L, Sottini A, Paghera S, Quiros-Roldan E, Rossi C, Oler AJ, Tompkins MF, Alba C, Vandernoot I, Goffard JC, Smits G, Migeotte I, Haerynck F, Soler-Palacin P, Martin-Nalda A, Colobran R, Morange PE, Keles S, Çölkesen F, Ozcelik T, Yasar KK, Senoglu S, Karabela ?N, Gallego CR, Novelli G, Hraiech S, Tandjaoui-Lambiotte Y, Duval X, Laouénan C,, Snow AL, Dalgard CL, Milner J, Vinh DC, Mogensen TH, Marr N, Spaan AN, Boisson B, Boisson-Dupuis S, Bustamante J, Puel A, Ciancanelli M, Meyts I, Maniatis T, Soumelis V, Amara A, Nussenzweig M, García-Sastre A, Krammer F, Pujol A, Duffy D, Lifton R, Zhang SY, Gorochov G, Béziat V, Jouanguy E, Sancho-Shimizu V, Rice CM, Abel L, Notarangelo LD, Cobat A, Su HC, Casanova JL COVID-STORM Clinicians, COVID Clinicians, Imagine COVID Group, French COVID Cohort Study Group, CoV-Contact Cohort, Amsterdam UMC Covid-19, Biobank, COVID Human Genetic Effort, NIAID-USUHS, TAGC COVID Immunity Group
- Abstract
Clinical outcome upon infection with SARS-CoV-2 ranges from silent infection to lethal COVID-19. We have found an enrichment in rare variants predicted to be loss-of-function (LOF) at the 13 human loci known to govern TLR3- and IRF7-dependent type I interferon (IFN) immunity to influenza virus, in 659 patients with life-threatening COVID-19 pneumonia, relative to 534 subjects with asymptomatic or benign infection. By testing these and other rare variants at these 13 loci, we experimentally define LOF variants in 23 patients (3.5%), aged 17 to 77 years, underlying autosomal recessive or dominant deficiencies. We show that human fibroblasts with mutations affecting this pathway are vulnerable to SARS-CoV-2. Inborn errors of TLR3- and IRF7-dependent type I IFN immunity can underlie life-threatening COVID-19 pneumonia in patients with no prior severe infection.Copyright © 2020, American Association for the Advancement of Science.
- Published
- 2020
23. A universal influenza virus vaccine strategy targeting the conserved stalk domain of the hemagglutinin
- Author
-
Krammer, F., primary
- Published
- 2018
- Full Text
- View/download PDF
24. Primary human influenza B virus infection induces cross-lineage hemagglutinin stalk-specifc antibodies mediating antibody-dependent cellular cytoxicity
- Author
-
Vries, R.D. (Rory) de, Nieuwkoop, N.J. (Nella), Klis, F.R.M. (Fiona) van der, Koopmans D.V.M., M.P.G. (Marion), Krammer, F. (Florian), Rimmelzwaan, G.F. (Guus), Vries, R.D. (Rory) de, Nieuwkoop, N.J. (Nella), Klis, F.R.M. (Fiona) van der, Koopmans D.V.M., M.P.G. (Marion), Krammer, F. (Florian), and Rimmelzwaan, G.F. (Guus)
- Abstract
Influenza A virus (IAV) and influenza B virus (IBV) cause substantial morbidity and mortality during annual epidemics. Two distinct lineages of IBV are distinguished, based on variation in hemagglutinin (HA): B/Victoria/2/87-like (B/Vic) and B/Yamagata/16/88-like (B/Yam). Here, we show that, in humans, primary IBV infection with either lineage induces HA-specifc antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies. IBV infection induced antibodies specifc to the HA head and stalk, but only HA stalk-specifc antibodies mediated ADCC efciently and displayed cross-reactivity with IBV of both lineages. This corresponds to recent fndings that 2 points of contact between the eflector and target cell (ie, HA and sialic acid, respectively, and the fragment crystallizable [Fc] domain and Fcfl receptor IIIa, respectively) are required for efcient ADCC activity and that antibodies specifc for the receptor-binding site located in the head domain of HA therefore fail to mediate ADCC. Potentially, ADCC-mediating antibodies directed to the HA stalk of IBV contribute to cross-protective immunity to IBV of both lineages.
- Published
- 2018
- Full Text
- View/download PDF
25. Influenza
- Author
-
Krammer, F, Smith, GJD, Fouchier, RAM, Peiris, M, Kedzierska, K, Doherty, PC, Palese, P, Shaw, ML, Treanor, J, Webster, RG, Garcia-Sastre, A, Krammer, F, Smith, GJD, Fouchier, RAM, Peiris, M, Kedzierska, K, Doherty, PC, Palese, P, Shaw, ML, Treanor, J, Webster, RG, and Garcia-Sastre, A
- Abstract
Influenza is an infectious respiratory disease that, in humans, is caused by influenza A and influenza B viruses. Typically characterized by annual seasonal epidemics, sporadic pandemic outbreaks involve influenza A virus strains of zoonotic origin. The WHO estimates that annual epidemics of influenza result in ~1 billion infections, 3–5 million cases of severe illness and 300,000–500,000 deaths. The severity of pandemic influenza depends on multiple factors, including the virulence of the pandemic virus strain and the level of pre-existing immunity. The most severe influenza pandemic, in 1918, resulted in >40 million deaths worldwide. Influenza vaccines are formulated every year to match the circulating strains, as they evolve antigenically owing to antigenic drift. Nevertheless, vaccine efficacy is not optimal and is dramatically low in the case of an antigenic mismatch between the vaccine and the circulating virus strain. Antiviral agents that target the influenza virus enzyme neuraminidase have been developed for prophylaxis and therapy. However, the use of these antivirals is still limited. Emerging approaches to combat influenza include the development of universal influenza virus vaccines that provide protection against antigenically distant influenza viruses, but these vaccines need to be tested in clinical trials to ascertain their effectiveness.
- Published
- 2018
26. Primary Human Influenza B Virus Infection Induces Cross-Lineage Hemagglutinin Stalk-Specific Antibodies Mediating Antibody-Dependent Cellular Cytoxicity
- Author
-
de Vries, Rory, Nieuwkoop, Nella, van der Klis, FRM, Koopmans, Marion, Krammer, F, Rimmelzwaan, Guus, de Vries, Rory, Nieuwkoop, Nella, van der Klis, FRM, Koopmans, Marion, Krammer, F, and Rimmelzwaan, Guus
- Published
- 2018
27. Mortality among Workers Receiving Compensation Awards for Silicosis in Ontario 1940-85
- Author
-
Finkelstein, M., Liss, G. M., Krammer, F., and Kusiak, R. A.
- Published
- 1987
28. Strategies to induce broadly protective antibody responses to viral glycoproteins
- Author
-
Krammer, F, primary
- Published
- 2017
- Full Text
- View/download PDF
29. Influenza-Specific Antibody-Dependent Phagocytosis
- Author
-
Krammer, F, Ana-Sosa-Batiz, F, Vanderven, H, Jegaskanda, S, Johnston, A, Rockman, S, Laurie, K, Barr, I, Reading, P, Lichtfuss, M, Kent, SJ, Krammer, F, Ana-Sosa-Batiz, F, Vanderven, H, Jegaskanda, S, Johnston, A, Rockman, S, Laurie, K, Barr, I, Reading, P, Lichtfuss, M, and Kent, SJ
- Abstract
BACKGROUND: Immunity to human influenza A virus (IAV) infection is only partially understood. Broadly non-neutralizing antibodies may assist in reducing disease but have not been well characterized. METHODS: We measured internalization of opsonized, influenza protein-coated fluorescent beads and live IAV into a monocytic cell line to study antibody-dependent phagocytosis (ADP) against multiple influenza hemagglutinin (HA) subtypes. We analyzed influenza HA-specific ADP in healthy human donors, in preparations of intravenous immunoglobulin (IVIG), and following IAV infection of humans and macaques. RESULTS: We found that both sera from healthy adults and IVIG preparations had broad ADP to multiple seasonal HA proteins and weak cross-reactive ADP to non-circulating HA proteins. The ADP in experimentally influenza-infected macaque plasma and naturally influenza-infected human sera mediated phagocytosis of both homologous and heterologous IAVs. Further, the IAV phagocytosed in an antibody-mediated manner had reduced infectivity in vitro. CONCLUSION: We conclude that IAV infections in humans and macaques leads to the development of influenza-specific ADP that can clear IAV infection in vitro. Repeated exposure of humans to multiple IAV infections likely leads to the development of ADP that is cross-reactive to strains not previously encountered. Further analyses of the protective capacity of broadly reactive influenza-specific ADP is warranted.
- Published
- 2016
30. Interfering with the Chronic Immune Response Rescues Chronic Degeneration After Traumatic Brain Injury
- Author
-
Erturk, A., primary, Mentz, S., additional, Stout, E. E., additional, Hedehus, M., additional, Dominguez, S. L., additional, Neumaier, L., additional, Krammer, F., additional, Llovera, G., additional, Srinivasan, K., additional, Hansen, D. V., additional, Liesz, A., additional, Scearce-Levie, K. A., additional, and Sheng, M., additional
- Published
- 2016
- Full Text
- View/download PDF
31. Epidemiological and Virological Characteristics of Influenza Viruses Circulating in Cambodia from 2009 to 2011
- Author
-
Krammer, F, Horm, SV, Mardy, S, Rith, S, Ly, S, Heng, S, Vong, S, Kitsutani, P, Ieng, V, Tarantola, A, Sar, B, Chea, N, Sokhal, B, Barr, I, Kelso, A, Horwood, PF, Timmermans, A, Hurt, A, Lon, C, Saunders, D, Ung, SA, Asgari, N, Roces, MC, Touch, S, Komadina, N, Buchy, P, Krammer, F, Horm, SV, Mardy, S, Rith, S, Ly, S, Heng, S, Vong, S, Kitsutani, P, Ieng, V, Tarantola, A, Sar, B, Chea, N, Sokhal, B, Barr, I, Kelso, A, Horwood, PF, Timmermans, A, Hurt, A, Lon, C, Saunders, D, Ung, SA, Asgari, N, Roces, MC, Touch, S, Komadina, N, and Buchy, P
- Abstract
BACKGROUND: The Cambodian National Influenza Center (NIC) monitored and characterized circulating influenza strains from 2009 to 2011. METHODOLOGY/PRINCIPAL FINDINGS: Sentinel and study sites collected nasopharyngeal specimens for diagnostic detection, virus isolation, antigenic characterization, sequencing and antiviral susceptibility analysis from patients who fulfilled case definitions for influenza-like illness, acute lower respiratory infections and event-based surveillance. Each year in Cambodia, influenza viruses were detected mainly from June to November, during the rainy season. Antigenic analysis show that A/H1N1pdm09 isolates belonged to the A/California/7/2009-like group. Circulating A/H3N2 strains were A/Brisbane/10/2007-like in 2009 before drifting to A/Perth/16/2009-like in 2010 and 2011. The Cambodian influenza B isolates from 2009 to 2011 all belonged to the B/Victoria lineage represented by the vaccine strains B/Brisbane/60/2008 and B/Malaysia/2506/2004. Sequences of the M2 gene obtained from representative 2009-2011 A/H3N2 and A/H1N1pdm09 strains all contained the S31N mutation associated with adamantanes resistance except for one A/H1N1pdm09 strain isolated in 2011 that lacked this mutation. No reduction in the susceptibility to neuraminidase inhibitors was observed among the influenza viruses circulating from 2009 to 2011. Phylogenetic analysis revealed that A/H3N2 strains clustered each year to a distinct group while most A/H1N1pdm09 isolates belonged to the S203T clade. CONCLUSIONS/SIGNIFICANCE: In Cambodia, from 2009 to 2011, influenza activity occurred throughout the year with peak seasonality during the rainy season from June to November. Seasonal influenza epidemics were due to multiple genetically distinct viruses, even though all of the isolates were antigenically similar to the reference vaccine strains. The drug susceptibility profile of Cambodian influenza strains revealed that neuraminidase inhibitors would be the drug of choice for
- Published
- 2014
32. Hemagglutinin Stalk-Based Universal Vaccine Constructs Protect against Group 2 Influenza A Viruses
- Author
-
Margine, I., primary, Krammer, F., additional, Hai, R., additional, Heaton, N. S., additional, Tan, G. S., additional, Andrews, S. A., additional, Runstadler, J. A., additional, Wilson, P. C., additional, Albrecht, R. A., additional, García-Sastre, A., additional, and Palese, P., additional
- Published
- 2013
- Full Text
- View/download PDF
33. Mortality among workers receiving compensation awards for silicosis in Ontario 1940-85.
- Author
-
Finkelstein, M, primary, Liss, G M, additional, Krammer, F, additional, and Kusiak, R A, additional
- Published
- 1987
- Full Text
- View/download PDF
34. Role of the Difference Tone f2‐f1 in Masking
- Author
-
Krammer, F. G., primary and Greenwood, D. D., additional
- Published
- 1974
- Full Text
- View/download PDF
35. Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans
- Author
-
Alter, G, primary, Yu, J, additional, Liu, J, additional, Chandrashekar, A, additional, Borducchi, EN, additional, Tostanoski, LT, additional, McMahan, K, additional, Jacob-Dolan, C, additional, Martinez, DR, additional, Chang, A, additional, Anioke, T, additional, Lifton, M, additional, Nkolola, J, additional, Stephenson, KE, additional, Atyeo, C, additional, Shin, S, additional, Fields, P, additional, Kaplan, I, additional, Robins, H, additional, Amanat, F, additional, Krammer, F, additional, Baric, RS, additional, Le Gars, M, additional, Sadoff, J, additional, de Groot, AM, additional, Heerwegh, D, additional, Struyf, F, additional, Douoguih, M, additional, van Hoof, J, additional, Schuitemaker, H, additional, and Barouch, DH, additional
- Full Text
- View/download PDF
36. Editorial.
- Author
-
Rasmussen AL, Hung I, and Krammer F
- Published
- 2025
- Full Text
- View/download PDF
37. A single immunization with intranasal Newcastle disease virus (NDV)-based XBB.1.5 variant vaccine reduces disease and transmission in animals against matched-variant challenge.
- Author
-
Slamanig S, Lemus N, Lai TY, Singh G, Mishra M, Abdeljawad A, Boza M, Dolange V, Singh G, Lee B, González-Domínguez I, Schotsaert M, Krammer F, Palese P, and Sun W
- Subjects
- Animals, Mice, Cricetinae, Female, Spike Glycoprotein, Coronavirus immunology, Spike Glycoprotein, Coronavirus genetics, COVID-19 Vaccines immunology, COVID-19 Vaccines administration & dosage, Mice, Inbred BALB C, Antibodies, Neutralizing blood, Antibodies, Neutralizing immunology, Immunity, Mucosal, Viral Vaccines immunology, Viral Vaccines administration & dosage, Viral Vaccines genetics, Vaccination methods, Newcastle Disease prevention & control, Newcastle Disease immunology, Immunization, Newcastle disease virus immunology, Newcastle disease virus genetics, Administration, Intranasal, COVID-19 prevention & control, COVID-19 immunology, COVID-19 transmission, Antibodies, Viral blood, Antibodies, Viral immunology, SARS-CoV-2 immunology, SARS-CoV-2 genetics
- Abstract
The rapid development of coronavirus disease 2019 (COVID-19) vaccines has helped mitigate the initial impact of the pandemic. However, in order to reduce transmission rates and protect more vulnerable and immunocompromised individuals unable to mount an effective immune response, development of a next-generation of mucosal vaccines is necessary. Here, we developed an intranasal Newcastle disease virus (NDV)-based vaccine expressing the spike of the XBB.1.5 variant stabilized in its pre-fusion conformation (NDV-HXP-S). We demonstrated that one or two intranasal immunizations with live NDV-HXP-S expressing the XBB.1.5 spike induces systemic and mucosal antibody responses in mice and protects them from a challenge with the XBB.1.5 variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Furthermore, one or two intranasal vaccinations with NDV-HXP-S XBB.1.5 protected hamsters from variant matched infection and reduced virus emission, thereby providing complete protection to naïve animals in a direct contact transmission study. The data shown in this study supports the notion that intranasal vaccination with variant-adapted NDV-HXP-S induces protective mucosal immunity and reduces transmission rates, highlighting the robust protective efficacy of a single mucosal vaccination in mice and hamsters., Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Weina Sun reports financial support was provided by CastleVax. Peter Palese reports financial support was provided by CastleVax. Michael Schotsaert reports a relationship with 7Hills Pharma that includes: funding grants. Michael Schotsaert reports a relationship with ArgenX N.V. that includes: funding grants. Michael Schotsaert reports a relationship with Moderna Inc that includes: funding grants. Michael Schotsaert reports a relationship with Phio Pharmaceuticals that includes: funding grants. Florian Krammer reports a relationship with Merck & Co Inc that includes: consulting or advisory. Florian Krammer reports a relationship with Seqirus USA Inc that includes: consulting or advisory. Florian Krammer reports a relationship with CureVac SE that includes: consulting or advisory. Florian Krammer reports a relationship with GSK that includes: consulting or advisory. Florian Krammer reports a relationship with Pfizer that includes: consulting or advisory and funding grants. Florian Krammer reports a relationship with Gritstone bio Inc that includes: consulting or advisory. Florian Krammer reports a relationship with Third Rock Ventures LLC that includes: consulting or advisory. Florian Krammer reports a relationship with Avimex Laboratories that includes: consulting or advisory. Peter Palese, Weina Sun, Florian Krammer has patent #RECOMBINANT NEWCASTLE DISEASE VIRUS EXPRESSING SARS-COV-2 SPIKE PROTEIN AND USES THEREOF pending to The Icahn School of Medicine at Mount Sinai. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier Ltd.)
- Published
- 2025
- Full Text
- View/download PDF
38. A pan-orthohantavirus human lung xenograft mouse model and its utility for preclinical studies.
- Author
-
Rissmann M, Noack D, Spliethof TM, Vaes VP, Stam R, van Run P, Clark JJ, Verjans GMGM, Haagmans BL, Krammer F, Koopmans MPG, van den Brand JMA, and Rockx B
- Subjects
- Animals, Mice, Humans, Hantavirus Infections virology, Orthohantavirus physiology, Heterografts, Antibodies, Neutralizing immunology, Disease Models, Animal, Lung virology, Lung pathology
- Abstract
Orthohantaviruses are emerging zoonotic viruses that can infect humans via the respiratory tract. There is an unmet need for an in vivo model to study infection of different orthohantaviruses in physiologically relevant tissue and to assess the efficacy of novel pan-orthohantavirus countermeasures. Here, we describe the use of a human lung xenograft mouse model to study the permissiveness for different orthohantavirus species and to assess its utility for preclinical testing of therapeutics. Following infection of xenografted human lung tissues, distinct orthohantavirus species differentially replicated in the human lung and subsequently spread systemically. The different orthohantaviruses primarily targeted the endothelium, respiratory epithelium and macrophages in the human lung. A proof-of-concept preclinical study showed treatment of these mice with a virus neutralizing antibody could block Andes orthohantavirus infection and dissemination. This pan-orthohantavirus model will facilitate progress in the fundamental understanding of pathogenesis and virus-host interactions for orthohantaviruses. Furthermore, it is an invaluable tool for preclinical evaluation of novel candidate pan-orthohantavirus intervention strategies., Competing Interests: I have read the journal's policy and the authors of this manuscript have the following competing interests: The Icahn School of Medicine at Mount Sinai has filed patent applications relating to SARS-CoV-2 serological assays, NDV-based SARS-CoV-2 vaccines, influenza virus vaccines and influenza virus therapeutics which list FK as co-inventor and of which several have been licensed. Mount Sinai has spun out a company, Kantaro, to market serological tests for SARS-CoV-2 and another company, Castlevax, to develop SARS-CoV-2 vaccines. FK is co-founder and scientific advisory board member of Castlevax. FK has consulted for Merck, Curevac, Seqirus and Pfizer and is currently consulting for 3rd Rock Ventures, GSK, Gritstone and Avimex. The Krammer laboratory is also collaborating with Dynavax on influenza vaccine development. All other authors have no conflicts of interest to report., (Copyright: © 2025 Rissmann et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2025
- Full Text
- View/download PDF
39. Discovering structure-property correlations: general discussion.
- Author
-
Anker AS, Aspuru-Guzik A, Ben Mahmoud C, Bennett S, Briling KR, Changiarath A, Chong S, Collins CM, Cooper AI, Crusius D, Darmawan KK, Das B, David N, Day GM, Deringer VL, Duarte F, Eardley-Brunt A, Evans ML, Evans R, Fairlamb I, Franklin BA, Frey J, Ganose AM, Goulding M, Hafizi R, Hakkennes M, Hickey N, James G, Jelfs KE, Kalikadien AV, Kapil V, Koczor-Benda Z, Krammer F, Kulik HJ, Kumar V, Kuttner C, Lam E, Lou Y, Mante E, Martin J, Mroz AM, Nematiaram T, Pare CWP, Patra S, Proudfoot J, Ruscic B, Ryder MR, Sakaushi K, Saßmannshausen J, Savoie BM, Schneider N, Schwaller P, Skjelstad BB, Sun W, Szczypiński FT, Torrisi S, Ueltzen K, Vishnoi S, Walsh A, Wang X, Wilson C, Wu R, and Zeitler J
- Published
- 2025
- Full Text
- View/download PDF
40. Safety and immunogenicity of an inactivated recombinant Newcastle disease virus vaccine expressing SARS-CoV-2 spike: A randomised, comparator-controlled, phase 2 trial.
- Author
-
Thiem VD, Anh DD, Ha VH, Van Thom N, Thang TC, Mateus J, Carreño JM, Raghunandan R, Huong NM, Mercer LD, Flores J, Escarrega EA, Raskin A, Thai DH, Van Be L, Sette A, Innis BL, Krammer F, and Weiskopf D
- Subjects
- Adolescent, Adult, Aged, Female, Humans, Male, Middle Aged, Young Adult, Antibodies, Viral blood, COVID-19 prevention & control, COVID-19 immunology, Immunogenicity, Vaccine, SARS-CoV-2 immunology, Vietnam, Antibodies, Neutralizing blood, COVID-19 Vaccines immunology, COVID-19 Vaccines administration & dosage, COVID-19 Vaccines adverse effects, Newcastle disease virus immunology, Newcastle disease virus genetics, Spike Glycoprotein, Coronavirus immunology, Vaccines, Inactivated immunology, Vaccines, Inactivated administration & dosage, Vaccines, Inactivated adverse effects, Vaccines, Synthetic immunology, Vaccines, Synthetic adverse effects, Vaccines, Synthetic administration & dosage
- Abstract
Production of affordable coronavirus disease 2019 (COVID-19) vaccines in low- and lower-middle-income countries is needed. NDV-HXP-S is an inactivated egg-based recombinant Newcastle disease virus vaccine expressing the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A public sector manufacturer in Vietnam assessed the immunogenicity of NDV-HXP-S (COVIVAC) relative to an authorized vaccine. This phase 2 stage of a randomised, observer-blind, controlled, phase 1/2 trial was conducted at three community health centers in Thai Binh Province, Vietnam. Healthy males and non-pregnant females, 18 years of age and older, were eligible. Participants were randomised by age (18-59, ≥60 years) to receive one of three treatments by intramuscular injection twice, 28 days apart: COVIVAC at 3 μg or 6 μg, or AstraZeneca COVID-19 vaccine VAXZEVRIA™. Participants and personnel assessing outcomes were masked to treatment. The vaccine dose was selected based on Phase 1 results. A 6 μg dose was chosen to explore the immunogenicity gain over the 3-μg dose. The study's aim is to evaluate the safety and immunogenicity of COVIVAC at two dose levels compared to VAXZEVRIA, the most commonly used COVID-19 vaccine in Vietnam. The main outcome was the induction of 50% neutralising antibody titers against vaccine-homologous pseudotyped virus 14 days (day 43) and 6 months (day 197) after the second vaccination by age group. The primary immunogenicity and safety analyses included all participants who received one dose of the vaccine. ClinicalTrials.govNCT05940194. During August 10-23, 2021, 737 individuals were screened, and 374 were randomised (124-125 per group); all subjects received vaccine dose one and all but three received doses two four weeks later. Subjects 18-59 years of age achieved the following geometric mean titers of PNA 14 days after vaccine dose two: 153⋅28 (95 % CI 124·2-189⋅15) for COVIVAC 3 μg, 176⋅2 (95 % CI 141⋅45-220.27) for COVIVAC 6 μg, and 99⋅92(95 % CI 80.80-123⋅56) for VAXZEVRIA. Subjects ≥60 years of age also achieved potent geometric mean titers of PNA at the same timepoint: 183⋅57 (95 % CI 133.4-252⋅61) for COVIVAC 3 μg, 257⋅87 (95 % CI 181⋅6-367⋅18) for COVIVAC 6 μg, and 79⋅49(95 % CI 55⋅68-113⋅4) for VAXZEVRIA. On day 43, the geometric mean fold rise of 50 % neutralising antibody titers for subjects age 18-59 years was 31·20 (COVIVAC 3 μg N = 82, 95 % CI 25·14-38·74), 35·80 (COVIVAC 6 μg; N = 83, 95 % CI 29·03-44·15), 18·85 (VAXZEVRIA; N = 82, 95 % CI 15·10-23·54), and for subjects age ≥ 60 years was 37·27 (COVIVAC 3 μg; N = 42, 95 % CI 27·43-50·63), 50·10 (COVIVAC 6 μg; N = 40, 95 % CI 35·46-70·76), 16·11 (VAXZEVRIA; N = 40, 95 % CI 11·73-22·13). Among subjects seronegative for anti-S IgG at baseline, the day 43 geometric mean titer ratio of neutralising antibody (COVIVC 6 μg/VAXZEVRIA) was 1·77 (95 % CI 1·30-2·40) for subjects age 18-59 years and 3·24 (95 % CI 1·98-5·32) for subjects age ≥ 60 years. On day 197, the age-specific ratios were 1·11 (95 % CI 0·51-2·43) and 2·32 (0·69-7·85). Vaccines were well tolerated; reactogenicity was predominantly mild and transient. The percentage of subjects with unsolicited adverse events (AEs) during 28 days after vaccinations was similar among treatments (COVIVAC 3 μg 29·0 %, COVIVAC 6 μg 23·2 %, VAXZEVRIA 31·2 %); no vaccine-related AE was reported. Considering that induction of neutralising antibodies against SARS-CoV-2 has been correlated with the efficacy of COVID-19 vaccines, including VAXZEVRIA, our results suggest that vaccination with COVIVAC may afford clinical benefit matching or exceeding that of the VAXZEVRIA vaccine. ClinicalTrials.govNCT05940194., Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Alessandro Sette reports financial support was provided by National Institutes of Health. Daniela Weiskopf reports a relationship with Moderna Inc. that includes: consulting or advisory. Daniela Weiskopf is an associate editor for Vaccine. La Jolla Institute has patents issued for various aspects of T cell epitope and vaccine design work. Juan Manuel Carreno reports funding was provided by Icahn School of Medicine at Mount Sinai Department of Microbiology. Florian Krammer reports a relationship with Avimex Laboratories that includes: royalties or licenses and consulting. Florian Krammer reports a relationship with Kantaro Biosciences that includes: royalties or licenses. Florian Krammer reports a past relationship with Pfizer that includes: consulting or advisory. Florian Krammer reports a past relationship with Seqirus Inc. that includes: consulting or advisory. Florian Krammer reports a past relationship with GSK that includes: consulting or advisory. Florian Krammer reports a relationship with Gritstone bio Inc. that includes: consulting or advisory. Florian Krammer reports a relationship with CastleVax that includes: equity or stocks, royalties or licenses, and consulting. Florian Krammer has patents regarding SARS-CoV-2 vaccines and serological assays issued to Icahn School of Medicine at Mount Sinai. All other authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF
41. Host-microbe multiomic profiling identifies distinct COVID-19 immune dysregulation in solid organ transplant recipients.
- Author
-
Pickering H, Schaenman J, Phan HV, Maguire C, Tsitsiklis A, Rouphael N, Higuita NIA, Atkinson MA, Brakenridge S, Fung M, Messer W, Salehi-Rad R, Altman MC, Becker PM, Bosinger SE, Eckalbar W, Hoch A, Doni Jayavelu N, Kim-Schulze S, Jenkins M, Kleinstein SH, Krammer F, Maecker HT, Ozonoff A, Diray-Arce J, Shaw A, Baden L, Levy O, Reed EF, and Langelier CR
- Subjects
- Humans, Male, Female, Middle Aged, Prospective Studies, Adult, Aged, Immunity, Innate, Chemokines metabolism, Chemokines blood, Gene Expression Profiling, Antibodies, Viral blood, Antibodies, Viral immunology, Host Microbial Interactions immunology, COVID-19 immunology, COVID-19 virology, Transplant Recipients, SARS-CoV-2 immunology, Organ Transplantation adverse effects
- Abstract
Coronavirus disease 2019 (COVID-19) poses significant risks for solid organ transplant recipients, who have atypical but poorly characterized immune responses to infection. We aim to understand the host immunologic and microbial features of COVID-19 in transplant recipients by leveraging a prospective multicenter cohort of 86 transplant recipients age- and sex-matched with 172 non-transplant controls. We find that transplant recipients have higher nasal SARS-CoV-2 viral abundance and impaired viral clearance, and lower anti-spike IgG levels. In addition, transplant recipients exhibit decreased plasmablasts and transitional B cells, and increased senescent T cells. Blood and nasal transcriptional profiling demonstrate unexpected upregulation of innate immune signaling pathways and increased levels of several proinflammatory serum chemokines. Severe disease in transplant recipients, however, is characterized by a less robust induction of pro-inflammatory genes and chemokines. Together, our study reveals distinct immune features and altered viral dynamics in solid organ transplant recipients., Competing Interests: Competing interests: F.K. has the following financial interests: The Icahn School of Medicine at Mount Sinai has filed patent applications relating to SARS-CoV-2 serological assays, NDV-based SARS-CoV-2 vaccines, influenza virus vaccines, and influenza virus therapeutics which list Florian Krammer as co-inventor (Patent title and number: Influenza Virus Vaccines and Uses Thereof (Chimeric HA 2) 9,371,366; Influenza Virus Vaccines and Uses Thereof (Chimeric HA 1) 10,131,695; Influenza Virus Vaccines and Uses Thereof (Chimeric HA 2) 2934581; Influenza Virus Vaccines and Uses Thereof (Chimeric HA 2) 9,968,670; Influenza Virus Vaccines and Uses Thereof (Chimeric HA 2) 10,137,189, Influenza Virus Vaccines and Uses Thereof (Chimeric HA 2) 10,583,188; Influenza Virus Vaccines and Uses Thereof (Chimeric HA 1) EP2758075; Influenza Virus Vaccination Regimens (Neuraminidase) 10,736,956; Anti-Influenza B Virus Neuraminidase Antibodies and Uses Thereof 11254733; Influenza Virus Hemagluttinin Proteins and Uses Thereof (Mosaic) 7237344). Mount Sinai has spun out a company, Kantaro, to market serological tests for SARS-CoV-2 and another company, Castlevax, to develop SARS-CoV-2 vaccines. F.K. is a co-founder and scientific advisory board member of Castlevax. F.K. has consulted for Merck, Curevac, Seqirus, and Pfizer and is currently consulting for 3rd Rock Ventures, GSK, Gritstone, and Avimex. The Krammer laboratory is also collaborating with Dynavax on influenza vaccine development. R.R.M. has a Leadership Councilor role 2018-2021 for the Society of Leukocyte Biology. O.L. has received support as a speaker for presentation regarding the Coronavirus pandemic from Midsized Bank Coalition of Americ (MBCA) and Moody’s Analytics. N.G.R. has research grants from Pfizer, Merck, Sanofi, Quidel, Immorna, Vaccine Company, and Lilly, serves on safety committees for ICON and EMMES and the advisory boards of Moderna, Seqirus, Pfizer, and Sanofi, and is a paid safety consultant for ICON, CyanVac and EMMES. The remaining authors declare no competing interests., (© 2025. The Author(s).)
- Published
- 2025
- Full Text
- View/download PDF
42. Anti-neuraminidase and anti-hemagglutinin stalk responses to different influenza a(H7N9) vaccine regimens.
- Author
-
El Sahly HM, Anderson EJ, Jackson LA, Neuzil KM, Atmar RL, Bernstein DI, Chen WH, Creech CB, Frey SE, Goepfert P, Meier J, Phadke V, Rouphael N, Rupp R, Stapleton JT, Spearman P, Walter EB, Winokur PL, Yildirim I, Williams TL, Oshinsky J, Coughlan L, Nijhuis H, Pasetti MF, Krammer F, Stadlbauer D, Nachbagauer R, Tsong R, Wegel A, and Roberts PC
- Abstract
Introduction: Pandemic influenza vaccine development focuses on the hemagglutinin (HA) antigen for potency and immunogenicity. Antibody responses targeting the neuraminidase (NA) antigen, or the HA stalk domain have been implicated in protection against influenza. Responses to the NA and HA-stalk domain following pandemic inactivated influenza are not well characterized in humans., Material and Methods: In a series of clinical trials, we determine the vaccines' NA content and demonstrate that NA inhibition (NAI) antibody responses increase in a dose-dependent manner following a 2-dose priming series with AS03-adjuvanted influenza A(H7N9) inactivated vaccine (A(H7N9) IIV). NAI antibody responses also increase with interval extension of the 2-dose priming series or following a 5-year delayed boost with a heterologous adjuvanted A(H7N9) IIV. Neither concomitant seasonal influenza vaccination given simultaneously or sequentially, nor use of heterologous A(H7N9) IIVs in the 2-dose priming series had an appreciable effect on NAI antibody responses. Anti-HA stalk antibody responses were minimal and not durable., Conclusions: We provide evidence for strategies to improve anti-neuraminidase responses which can be further standardized for pandemic preparedness., Clinical Trial Registry Numbers: NCT03312231, NCT03318315, NCT03589807, NCT03738241., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2025 Elsevier Ltd. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF
43. A surrogate ELISA to select high titer human convalescent plasma for treating immunocompromised patients infected with SARS-CoV-2 variants of concern.
- Author
-
Dolange V, Slamanig S, Abdeljawad A, Ying TL, Lemus N, Singh G, Carreño JM, Abad A, Srivastava K, Simon V, Sachithanandham J, Pekosz A, Sullivan D, Krammer F, Sun W, Palese P, and González-Domínguez I
- Abstract
Background: The emergence of new SARS-CoV-2 variants poses a new challenge for the treatment of immunocompromised patients against COVID-19. In this context, high titer COVID-19 Convalescent Plasma (CCP) is one of the few available therapeutics for these patients. We have revisited the selection of CCP samples and its efficacy against Omicron XBB.1.5 variant, dominant strain in 2023., Methods: We have reviewed a surrogate enzyme-linked immunoassay (ELISA) to select CCP samples that will guarantee a protective level of neutralizing antibodies as the main correlate of protection. We analyzed antibody titers in 500 serum samples from a population-based serosurvey at Mount Sinai Hospital collected in early 2023 and validated the results with a set of CCP samples (collected 2020-2023) and confirmed its protection in an immunosuppressed mouse model., Results: By using logistic regression modeling, we have redefined the definition of high titer CCP against the new variant in the post-pandemic era, where over 97% of the population have natural or vaccine-induced antibodies against the first SARS-CoV-2 strains. We next developed a new immunocompromised mouse model to validate the CCP in vivo against emerging variants. Equivalent to the two CCP units recommended for human use, the treatment of immunocompromised mice with two doses (100µL/dose) of CCP plasma via intraperitoneal injection showed a 46-fold reduction in lung viral titers 3-days-post-XBB.1.5-infection., Conclusions: We believe the present results will guide future efforts in the selection of high titer CCP against emerging SARS-CoV-2 variants., (© The Author(s) 2025. Published by Oxford University Press on behalf of Infectious Diseases Society of America. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.)
- Published
- 2025
- Full Text
- View/download PDF
44. Proteomic signatures of vaccine-induced and breakthrough infection-induced host responses to SARS-CoV-2.
- Author
-
Williams E, Echeverri Tribin F, Carreño JM, Krammer F, Hoffer M, Pallikkuth S, and Pahwa S
- Subjects
- Humans, Female, Male, Middle Aged, Adult, Immunity, Innate, Vaccination, Immunity, Cellular, Aged, Killer Cells, Natural immunology, Breakthrough Infections, COVID-19 immunology, COVID-19 prevention & control, COVID-19 Vaccines immunology, SARS-CoV-2 immunology, Proteomics methods
- Abstract
The severity of SARS-CoV-2 illness is influenced by factors including age, sex, pre-existing health conditions, and individual immune responses. However, the mechanisms conferring immunity following antigenic challenge have not been fully elucidated. There are currently no studies evaluating longitudinal proteomic changes in individuals following vaccination and breakthrough, limiting our understanding of the underlying mechanisms driving conferred immunity. In this work, we evaluated the differential protein expression in individuals with (CoV-P) or without (CoV-N) prior SARS-CoV-2 infection following primary vaccination and after breakthrough infection (CoV-BT). Overall, we found that individuals receiving primary vaccination relied on innate immune mechanisms, including complement and coagulation cascades, and natural killer cell-mediated cytotoxicity, while conversely, breakthrough infection immune mechanisms relied on T cell-mediated immunity. These mechanistic differences may help explain heterogeneity associated with vaccine-induced and breakthrough infection-related outcomes., Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Florian Krammer reports financial support was provided by Icahn School of Medicine at Mount Sinai. Savita Pahwa reports financial support was provided by University of Miami Miller School of Medicine. Florian Krammer reports a relationship with Icahn School of Medicine at Mount Sinai that includes:. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF
45. Phase II study on the safety and immunogenicity of single-dose intramuscular or intranasal administration of the AVX/COVID-12 "Patria" recombinant Newcastle disease virus vaccine as a heterologous booster against COVID-19 in Mexico.
- Author
-
López-Macías C, Torres M, Armenta-Copca B, Wacher NH, Castro-Castrezana L, Colli-Domínguez AA, Rivera-Hernández T, Torres-Flores A, Damián-Hernández M, Ramírez-Martínez L, la Rosa GP, Rojas-Martínez O, Suárez-Martínez A, Peralta-Sánchez G, Carranza C, Juárez E, Zamudio-Meza H, Carreto-Binaghi LE, Viettri M, Romero-Rodríguez D, Palencia A, Reyna-Rosas E, Márquez-García JE, Sarfati-Mizrahi D, Sun W, Chagoya-Cortés HE, Castro-Peralta F, Palese P, Krammer F, García-Sastre A, and Lozano-Dubernard B
- Subjects
- Humans, Injections, Intramuscular, Male, Female, Adult, Mexico, Middle Aged, Vaccines, Synthetic immunology, Vaccines, Synthetic administration & dosage, Vaccines, Synthetic adverse effects, Young Adult, Immunoglobulin G blood, Vaccination methods, Spike Glycoprotein, Coronavirus immunology, Spike Glycoprotein, Coronavirus genetics, Administration, Intranasal, COVID-19 Vaccines immunology, COVID-19 Vaccines administration & dosage, COVID-19 Vaccines adverse effects, COVID-19 prevention & control, COVID-19 immunology, Immunization, Secondary, Antibodies, Viral blood, SARS-CoV-2 immunology, Immunogenicity, Vaccine, Antibodies, Neutralizing blood
- Abstract
Background: The global inequity in the distribution of COVID-19 vaccines underscores the urgent need for innovative and cost-effective vaccine technologies to address access disparities and implement local manufacturing capabilities. This is essential for achieving and sustaining widespread immunity, and for ensuring timely protection of vulnerable populations during future booster campaigns in lower- middle income countries (LMICs)., Methods: To address this need, we conducted a phase II clinical trial to evaluate the safety and immunogenicity of the locally manufactured AVX/COVID-12 "Patria" (AVX) vaccine as a booster dose. The vaccine was administered either intramuscularly (IM) or intranasally (IN) to participants who had previously completed a vaccination regimen for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using adenoviral vector, inactivated virus, or mRNA-based vaccines. Participants with initial anti-spike IgG titers below 1,200 U/mL were included, allowing us to observe the booster effect induced by vaccination., Results: Both IM and IN immunization with AVX were found to be safe and well-tolerated. The vaccine induced a significant (>2.5-fold) increase in neutralizing antibodies against the ancestral Wuhan strain and variants of concern (VOCs), including Alpha, Beta, Delta, and Omicron (BA.2 and BA.5). This immune response was further supported by increased cellular production of interferon-gamma (IFN-γ), demonstrating a robust and multifaceted immune reaction., Conclusions: The administration of AVX as a booster dose, whether through IM or IN routes, was safe and well-tolerated. The vaccine extended immune responses not only against the ancestral Wuhan-1 strain but also against various VOCs. Its ability to enhance preexisting immune responses suggests a potential contribution to expanding and sustaining herd immunity within the population., Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Laboratorios Avimex S.A. de C.V. reports financial support was provided by Consejo Nacional de Humanidades, Ciencia y Tecnología. México. Bernardo Lozano-Dubernard reports financial support was provided by Laboratorios Avimex S.A. de C.V. P.P., F.K., and A.G.-S. has patent #62/994,252 pending to Mount Sinai. P.P., F.K., and A.G.-S. has patent #63/018,457 pending to Mount Sinai. P.P., F.K., and A.G.-S. has patent #63/020,503 pending to Mount Sinai. P.P., F.K., and A.G.-S. has patent #63/024,436 pending to Mount Sinai. P.P., F.K., and A.G.-S. has patent #63/251,020 pending to Mount Sinai. M.T., D.S.-M., C.L.-M., H.E.C.-C., F.C.-P., G.P.D.L., and B.L.-D. has patent #PCT/IB2022/058886. MX/a/2021/011439 pending to Avimex S.A. de C.V. The vaccine candidate administered in this study was developed by faculty members at the Icahn School of Medicine at Mount Sinai including P.P., F.K., and A.G.-S. Mount Sinai is seeking to commercialize this vaccine; therefore, the institution and its faculty inventors could benefit financially. The Icahn School of Medicine at Mount Sinai has filed patent applications relating to SARS-849 CoV-2 serological assays (USA Provisional Application Numbers: 62/994,252, 63/018,457, 63/020,503, and 63/024,436) and NDV-based SARS-CoV-2 vaccines (USA Provisional Application Number: 63/251,020) which list F.K. as co-inventor. A.G.-S. and P.P. are co-inventors in the NDV-based SARS-CoV-2 vaccine patent application. Patent applications were submitted by the Icahn School of Medicine at Mount Sinai. Mount Sinai has spun out a company, Kantaro, to market serological tests for SARS-CoV-2 and another company, CastleVax, to commercialize SARS-CoV-2 vaccines. F.K., P.P., and A.G.-S. serve on the scientific advisory board of CastleVax and are listed as co-founders of the company. F.K. has consulted for Merck, Seqirus, Curevac, and Pfizer, and is currently consulting for Gritstone, Third Rock Ventures, GSK, and Avimex. The F.K. laboratory has been collaborating with Pfizer on animal models of SARS-CoV-2. C.L.-M. has consulted for AstraZeneca. The A.G.-S. laboratory has received research support from GSK, Pfizer, Senhwa Biosciences, Kenall Manufacturing, Blade Therapeutics, Avimex, Johnson & Johnson, Dynavax, 7Hills Pharma, Pharmamar, ImmunityBio, Accurius, Nanocomposix, Hexamer, N-fold LLC, Model Medicines, Atea Pharma, Applied Biological Laboratories, and Merck. A.G.-S. has consulting agreements for the following companies involving cash and/or stock: Amovir, Vivaldi Biosciences, Contrafect, 7Hills Pharma, Avimex, Pagoda, Accurius, Esperovax, Farmak, Applied Biological Laboratories, Pharmamar, CureLab Oncology, CureLab Veterinary, Synairgen, Paratus, Pfizer, and Prosetta. A.G.-S. has been an invited speaker in meeting events organized by Seqirus, Janssen, Abbott, and AstraZeneca. PP has a consulting agreement with Avimex. Members of Avimex developed the live vaccine used in this study. Avimex filed patent applications with Mount Sinai and CONAHCYT. M.T., D.S.-M., C.L.-M., H.E.C.-C., F.C.-P., G.P.D.L., and B.L.-D. are named as inventors on at least one of those patent applications. The clinical study was entirely performed in Mexico, and Mount Sinai had no role in it. The rest of the participants are employees of their corresponding institutions and declare no competing interests. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF
46. Targets of influenza human T-cell response are mostly conserved in H5N1.
- Author
-
Sidney J, Kim A-R, de Vries RD, Peters B, Meade PS, Krammer F, Grifoni A, and Sette A
- Abstract
Frequent recent spillovers of subtype H5N1 clade 2.3.4.4b highly pathogenic avian influenza (HPAI) virus into poultry and mammals, especially dairy cattle, including several human cases, increased concerns over a possible future pandemic. Here, we performed an analysis of epitope data curated in the Immune Epitope Database (IEDB). We found that the patterns of immunodominance of seasonal influenza viruses circulating in humans and H5N1 are similar. We further conclude that a significant fraction of the T-cell epitopes is conserved at a level associated with cross-reactivity between avian and seasonal sequences, and we further experimentally demonstrate extensive cross-reactivity in the most dominant T-cell epitopes curated in the IEDB. Based on these observations, and the overall similarity of the neuraminidase (NA) N1 subtype encoded in both HPAI and seasonal H1N1 influenza virus as well as cross-reactive group 1 HA stalk-reactive antibodies, we expect that a degree of pre-existing immunity is present in the general human population that could blunt the severity of human H5N1 infections.IMPORTANCEInfluenza A viruses (IAVs) cause pandemics that can result in millions of deaths. The highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype is presently among the top viruses of pandemic concern, according to the WHO and the National Institute of Allergy and Infectious Diseases (NIAID). Previous exposure by infection and/or vaccination to a given IAV subtype or clade influences immune responses to a different subtype or clade. Analysis of human CD4 and CD8 T-cell epitope conservation between HPAI H5N1 and seasonal IAV sequences revealed levels of identity and conservation conducive to T cell cross-reactivity, suggesting that pre-existing T cell immune memory should, to a large extent, cross-recognize avian influenza viruses. This observation was experimentally verified by testing responses from human T cells to non-avian IAV and their HPAI H5N1 counterparts. Accordingly, should a more widespread HPAI H5N1 outbreak occur, we hypothesize that cross-reactive T-cell responses might be able to limit disease severity.
- Published
- 2024
- Full Text
- View/download PDF
47. Hemagglutinin Stalk-Specific Fc-Mediated Functions Are Associated With Protection Against Influenza Illness After Seasonal Influenza Vaccination.
- Author
-
Motsoeneng BM, Dhar N, Nunes MC, Krammer F, Madhi SA, Moore PL, and Richardson SI
- Subjects
- Humans, Female, Pregnancy, Adult, Vaccination, Antibody-Dependent Cell Cytotoxicity immunology, HIV Infections immunology, HIV Infections prevention & control, Phagocytosis, Young Adult, Vaccines, Inactivated immunology, Vaccines, Inactivated administration & dosage, Immunoglobulin Fc Fragments immunology, Influenza, Human prevention & control, Influenza, Human immunology, Influenza Vaccines immunology, Influenza Vaccines administration & dosage, Antibodies, Viral blood, Antibodies, Viral immunology, Hemagglutinin Glycoproteins, Influenza Virus immunology, Influenza A Virus, H1N1 Subtype immunology
- Abstract
Background: Future vaccine candidates aim to elicit antibodies against the conserved hemagglutinin stalk domain. Understanding the protective mechanism of these antibodies, which mediate broad neutralization and Fc-mediated functions, following seasonal vaccination is critical., Methods: Plasma samples were obtained from pregnant women with or without HIV-1 enrolled in a randomised trial (138 trivalent inactivated vaccine [TIV] and 145 placebo recipients). Twenty-three influenza cases were confirmed within 6 months postpartum. We measured H1 stalk-specific antibody-dependent cellular phagocytosis (ADCP), complement deposition (ADCD) and cellular cytotoxicity (ADCC) at enrolment and 1-month postvaccination., Results: Lower H1 stalk-specific ADCP and ADCD activity was detected for participants with confirmed influenza compared with individuals without illness 1-month postvaccination. Pre-existing ADCP scores ≥250 reduced the odds of A/H1N1 infection (odds ratio [OR], 0.11; P = .01) with an 83% likelihood of risk reduction. Following TIV, ADCD scores of ≥25 and ≥15 significantly reduced the odds against A/H1N1 (OR, 0.10; P = .01) and non-group 1 (OR, 0.06; P = .0004) influenza virus infections, respectively. These ADCD scores were associated with >84% likelihood of risk reduction., Conclusions: Overall, H1 stalk-specific Fc effector function correlates with protection against influenza illness following influenza vaccination during pregnancy. These findings provide insight into the protective mechanisms of hemagglutinin stalk antibodies., Clinical Trials Registration: NCT01306669 and NCT01306682 (ClinicalTrials.gov)., Competing Interests: Potential conflicts of interest. F. K. reports royalties from Avimex; consulting fees from Pfizer, Seqirus, Third Rock Ventures and Avimex, Gritstone; payment for academic lectures during the past 2 years from the Icahn School of Medicine at Mount Sinai; is named as inventor on intellectual property filed by the Icahn School of Medicine at Mount Sinai for influenza virus vaccines and therapeutics, SARS-CoV-2 vaccines, and SARS-CoV-2 serological assays; is cofounder and scientific advisory board member of Castlevax; and is working with Dynavax on influenza virus vaccine development. All other authors report no potential conflicts. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed., (© The Author(s) 2024. Published by Oxford University Press on behalf of Infectious Diseases Society of America. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF
48. Humoral Correlates of Protection Against Influenza A/H3N2 Virus Infection.
- Author
-
Hoy G, Stadlbauer D, Balmaseda A, Kuan G, López R, Carreno Quiroz JM, Ojeda S, Sánchez N, Yellin T, Plazaola M, Frutos A, Krammer F, and Gordon A
- Subjects
- Humans, Adult, Male, Adolescent, Female, Child, Young Adult, Middle Aged, Child, Preschool, Nicaragua, Infant, Neuraminidase immunology, Aged, Family Characteristics, Enzyme-Linked Immunosorbent Assay, Immunity, Humoral, Influenza Vaccines immunology, Influenza Vaccines administration & dosage, Influenza, Human prevention & control, Influenza, Human immunology, Influenza A Virus, H3N2 Subtype immunology, Antibodies, Viral blood, Antibodies, Viral immunology, Hemagglutination Inhibition Tests, Hemagglutinin Glycoproteins, Influenza Virus immunology
- Abstract
Background: Influenza virus remains a threat to human health, but gaps remain in our knowledge of the humoral correlates of protection against influenza virus A/H3N2, limiting our ability to generate effective, broadly protective vaccines. The role of antibodies against the hemagglutinin (HA) stalk, a highly conserved but immunologically subdominant region, has not been established for influenza virus A/H3N2., Methods: Household transmission studies were conducted in Managua, Nicaragua, across 3 influenza seasons. Household contacts were tested for influenza virus infection using reverse-transcription polymerase chain reaction. We compared preexisting antibody levels against full-length HA, HA stalk, and neuraminidase (NA) measured by enzyme-linked immunosorbent assay, along with hemagglutination inhibition assay titers, between infected and uninfected participants., Results: A total of 899 individuals participated in household activation, with 329 infections occurring. A 4-fold increase in initial HA stalk titers was independently associated with an 18% decrease in the risk of infection (adjusted odds ratio [aOR], 0.82 [95% confidence interval {CI}, .68-.98]; P = .04). In adults, anti-HA stalk antibodies were independently associated with protection (aOR, 0.72 [95% CI, .54-.95]; P = .02). However, in 0- to 14-year-olds, anti-NA antibodies (aOR, 0.67 [95% CI, .53-.85]; P < .01) were associated with protection against infection, but anti-HA stalk antibodies were not., Conclusions: The HA stalk is an independent correlate of protection against A/H3N2 infection, though this association is age dependent. Our results support the continued exploration of the HA stalk as a target for broadly protective influenza vaccines but suggest that the relative benefits may depend on age and influenza virus exposure history., Competing Interests: Potential conflicts of interest. The Icahn School of Medicine at Mount Sinai has filed patent applications relating to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serological assays, Newcastle disease virus–based SARS-CoV-2 vaccines, influenza virus vaccines, and influenza virus therapeutics that list F. K. as co-inventor. Some of this intellectual property has been licensed and F. K. receives royalty payments from it. Mount Sinai has spun out a company, Kantaro, to market serological tests for SARS-CoV-2 and another company, Castlevax, to develop SARS-CoV-2 vaccines; F. K. is co-founder and scientific advisory board member of Castlevax. F. K. has consulted for Merck, Curevac, Seqirus, and Pfizer and is currently consulting for 3rd Rock Ventures, GSK, Gritstone, and Avimex. The Krammer laboratory is also collaborating with Dynavax on influenza vaccine development. A. G. has served on a respiratory syncytial virus vaccine advisory board for Janssen. All other authors report no potential conflicts. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed., (© The Author(s) 2024. Published by Oxford University Press on behalf of Infectious Diseases Society of America. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF
49. Protective effect and molecular mechanisms of human non-neutralizing cross-reactive spike antibodies elicited by SARS-CoV-2 mRNA vaccination.
- Author
-
Clark JJ, Hoxie I, Adelsberg DC, Sapse IA, Andreata-Santos R, Yong JS, Amanat F, Tcheou J, Raskin A, Singh G, González-Domínguez I, Edgar JE, Bournazos S, Sun W, Carreño JM, Simon V, Ellebedy AH, Bajic G, and Krammer F
- Subjects
- Humans, Animals, Mice, Vaccination, Female, Epitopes immunology, Spike Glycoprotein, Coronavirus immunology, SARS-CoV-2 immunology, Antibodies, Viral immunology, COVID-19 immunology, COVID-19 prevention & control, COVID-19 virology, Cross Reactions immunology, Antibodies, Neutralizing immunology, COVID-19 Vaccines immunology, Antibodies, Monoclonal immunology
- Abstract
Neutralizing antibodies correlate with protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recent studies, however, show that binding antibody titers, in the absence of robust neutralizing activity, also correlate with protection against disease progression. Non-neutralizing antibodies cannot directly protect against infection but may recruit effector cells and thus contribute to the clearance of infected cells. Additionally, they often bind conserved epitopes across multiple variants. Here, we characterize 42 human monoclonal antibodies (mAbs) from coronavirus disease 2019 (COVID-19)-vaccinated individuals. Most of these antibodies exhibit no neutralizing activity in vitro, but several non-neutralizing antibodies provide protection against lethal challenge with SARS-CoV-2 in different animal models. A subset of those mAbs shows a clear dependence on Fc-mediated effector functions. We have determined the structures of three non-neutralizing antibodies, with two targeting the receptor-binding domain and one that binds the subdomain 1 region. Our data confirm the real-world observation in humans that non-neutralizing antibodies to SARS-CoV-2 can be protective., Competing Interests: Declaration of interests The Icahn School of Medicine at Mount Sinai has filed patent applications relating to SARS-CoV-2 serological assays, NDV-based SARS-CoV-2 vaccines, influenza virus vaccines, and influenza virus therapeutics, which list F.K. as co-inventor. V.S. is also listed as inventor on the SARS-CoV-2 serological assays patent, and W.S. is listed as inventor on the NDV-based SARS-CoV-2 vaccine IP. Mount Sinai has spun out a company, Kantaro, to market serological tests for SARS-CoV-2 and another company, Castlevax, to develop SARS-CoV-2 vaccines. F.K. and W.S. are co-founders and scientific advisory board members of Castlevax. F.K. has consulted for Merck, Curevac, Seqirus, GSK, and Pfizer and is currently consulting for Third Rock Ventures, Sanofi, Gritstone, and Avimex. F.K. is a recipient of royalties from a licensing agreement with Leyden Laboratories B.V. The Krammer laboratory is also collaborating with Dynavax on influenza vaccine development and VIR on influenza therapeutics development. The Ellebedy laboratory has received funding under sponsored research agreements from Moderna, Emergent BioSolutions, and AbbVie. A.H.E. has received consulting and speaking fees from InBios International, Inc., Fimbrion Therapeutics, RGAX, Mubadala Investment Company, AstraZeneca, Moderna, Pfizer, GSK, Danaher, Third Rock Ventures, Goldman Sachs, and Morgan Stanley, is the founder of ImmuneBio Consulting, and is a recipient of royalties from licensing agreements with Abbvie and Leyden Laboratories B.V., (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
50. Unraveling SARS-CoV-2 Host-Response Heterogeneity through Longitudinal Molecular Subtyping.
- Author
-
Wang K, Nie Y, Maguire C, Syphurs C, Sheen H, Karoly M, Lapp L, Gygi JP, Jayavelu ND, Patel RK, Hoch A, Corry D, Kheradmand F, McComsey GA, Fernandez-Sesma A, Simon V, Metcalf JP, Higuita NIA, Messer WB, Davis MM, Nadeau KC, Kraft M, Bime C, Schaenman J, Erle D, Calfee CS, Atkinson MA, Brackenridge SC, Hafler DA, Shaw A, Rahman A, Hough CL, Geng LN, Ozonoff A, Haddad EK, Reed EF, van Bakel H, Kim-Schultz S, Krammer F, Wilson M, Eckalbar W, Bosinger S, Langelier CR, Sekaly RP, Montgomery RR, Maecker HT, Krumholz H, Melamed E, Steen H, Pulendran B, Augustine AD, Cairns CB, Rouphael N, Becker PM, Fourati S, Shannon CP, Smolen KK, Peters B, Kleinstein SH, Levy O, Altman MC, Iwasaki A, Diray-Arce J, Ehrlich LIR, and Guan L
- Abstract
Hospitalized COVID-19 patients exhibit diverse immune responses during acute infection, which are associated with a wide range of clinical outcomes. However, understanding these immune heterogeneities and their links to various clinical complications, especially long COVID, remains a challenge. In this study, we performed unsupervised subtyping of longitudinal multi-omics immunophenotyping in over 1,000 hospitalized patients, identifying two critical subtypes linked to mortality or mechanical ventilation with prolonged hospital stay and three severe subtypes associated with timely acute recovery. We confirmed that unresolved systemic inflammation and T-cell dysfunctions were hallmarks of increased severity and further distinguished patients with similar acute respiratory severity by their distinct immune profiles, which correlated with differences in demographic and clinical complications. Notably, one critical subtype (SubF) was uniquely characterized by early excessive inflammation, insufficient anticoagulation, and fatty acid dysregulation, alongside higher incidences of hematologic, cardiac, and renal complications, and an elevated risk of long COVID. Among the severe subtypes, significant differences in viral clearance and early antiviral responses were observed, with one subtype (SubC) showing strong early T-cell cytotoxicity but a poor humoral response, slower viral clearance, and greater risks of chronic organ dysfunction and long COVID. These findings provide crucial insights into the complex and context-dependent nature of COVID-19 immune responses, highlighting the importance of personalized therapeutic strategies to improve both acute and long-term outcomes.
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.