1. Absence of global solutions to wave equations with structural damping and nonlinear memory
- Author
-
Kirane Mokhtar, Nabti Abderrazak, and Jlali Lotfi
- Subjects
damped wave equation ,nonexistence of global solution ,life span ,35l05 ,35a01 ,26a33 ,Mathematics ,QA1-939 - Abstract
We prove the nonexistence of global solutions for the following wave equations with structural damping and nonlinear memory source term utt+(−Δ)α2u+(−Δ)β2ut=∫0t(t−s)δ−1∣u(s)∣pds{u}_{tt}+{\left(-\Delta )}^{\tfrac{\alpha }{2}}u+{\left(-\Delta )}^{\tfrac{\beta }{2}}{u}_{t}=\underset{0}{\overset{t}{\int }}{\left(t-s)}^{\delta -1}{| u\left(s)| }^{p}{\rm{d}}s and utt+(−Δ)α2u+(−Δ)β2ut=∫0t(t−s)δ−1∣us(s)∣pds,{u}_{tt}+{\left(-\Delta )}^{\tfrac{\alpha }{2}}u+{\left(-\Delta )}^{\tfrac{\beta }{2}}{u}_{t}=\underset{0}{\overset{t}{\int }}{\left(t-s)}^{\delta -1}{| {u}_{s}\left(s)| }^{p}{\rm{d}}s, posed in (x,t)∈RN×[0,∞)\left(x,t)\in {{\mathbb{R}}}^{N}\times \left[0,\infty ), where u=u(x,t)u=u\left(x,t) is the real-valued unknown function, p>1p\gt 1, α,β∈(0,2)\alpha ,\beta \in \left(0,2), δ∈(0,1)\delta \in \left(0,1), by using the test function method under suitable sign assumptions on the initial data. Furthermore, we give an upper bound estimate of the life span of solutions.
- Published
- 2024
- Full Text
- View/download PDF