Back to Search Start Over

Absence of global solutions to wave equations with structural damping and nonlinear memory

Authors :
Kirane Mokhtar
Nabti Abderrazak
Jlali Lotfi
Source :
Demonstratio Mathematica, Vol 57, Iss 1, Pp 163-171 (2024)
Publication Year :
2024
Publisher :
De Gruyter, 2024.

Abstract

We prove the nonexistence of global solutions for the following wave equations with structural damping and nonlinear memory source term utt+(−Δ)α2u+(−Δ)β2ut=∫0t(t−s)δ−1∣u(s)∣pds{u}_{tt}+{\left(-\Delta )}^{\tfrac{\alpha }{2}}u+{\left(-\Delta )}^{\tfrac{\beta }{2}}{u}_{t}=\underset{0}{\overset{t}{\int }}{\left(t-s)}^{\delta -1}{| u\left(s)| }^{p}{\rm{d}}s and utt+(−Δ)α2u+(−Δ)β2ut=∫0t(t−s)δ−1∣us(s)∣pds,{u}_{tt}+{\left(-\Delta )}^{\tfrac{\alpha }{2}}u+{\left(-\Delta )}^{\tfrac{\beta }{2}}{u}_{t}=\underset{0}{\overset{t}{\int }}{\left(t-s)}^{\delta -1}{| {u}_{s}\left(s)| }^{p}{\rm{d}}s, posed in (x,t)∈RN×[0,∞)\left(x,t)\in {{\mathbb{R}}}^{N}\times \left[0,\infty ), where u=u(x,t)u=u\left(x,t) is the real-valued unknown function, p>1p\gt 1, α,β∈(0,2)\alpha ,\beta \in \left(0,2), δ∈(0,1)\delta \in \left(0,1), by using the test function method under suitable sign assumptions on the initial data. Furthermore, we give an upper bound estimate of the life span of solutions.

Details

Language :
English
ISSN :
23914661
Volume :
57
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Demonstratio Mathematica
Publication Type :
Academic Journal
Accession number :
edsdoj.274a4232bbdc47fd82c9dbdc857f132f
Document Type :
article
Full Text :
https://doi.org/10.1515/dema-2024-0048