1. Hilbert squares of K3 surfaces and Debarre-Voisin varieties
- Author
-
Claire Voisin, Frédéric Han, Kieran G. O'Grady, Olivier Debarre, Université Paris Diderot, Sorbonne Paris Cité, Paris, France, Université Paris Diderot - Paris 7 (UPD7), Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome], Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), and Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
Pure mathematics ,General Mathematics ,forme trilineari alternanti ,spazi di moduli ,Space (mathematics) ,01 natural sciences ,Square (algebra) ,K3 surface ,Mathematics - Algebraic Geometry ,Mathematics::Algebraic Geometry ,Dimension (vector space) ,0103 physical sciences ,FOS: Mathematics ,[MATH]Mathematics [math] ,0101 mathematics ,Algebraic Geometry (math.AG) ,14J32, 14J35, 14M15, 14J70, 14J28 ,Mathematics::Symplectic Geometry ,Mathematics ,Varieta' hyperkaehler ,010102 general mathematics ,Degenerate energy levels ,Complex vector ,010307 mathematical physics ,Variety (universal algebra) - Abstract
The Debarre-Voisin hyperk\"ahler fourfolds are built from alternating $3$-forms on a $10$-dimensional complex vector space, which we call trivectors. They are analogous to the Beauville-Donagi fourfolds associated with cubic fourfolds. In this article, we study several trivectors whose associated Debarre-Voisin variety is degenerate, in the sense that it is either reducible or has excessive dimension. We show that the Debarre-Voisin varieties specialize, along general $1$-parameter degenerations to these trivectors, to varieties isomorphic or birationally isomorphic to the Hilbert square of a K3 surface., Comment: 47 pages. Introduction rewritten and various corrections made throughout the article
- Published
- 2020
- Full Text
- View/download PDF