Back to Search Start Over

Moduli of Double EPW-Sextics

Authors :
Kieran G. O’Grady
Kieran G. O’Grady
Publication Year :
2016

Abstract

The author studies the GIT quotient of the symplectic grassmannian parametrizing lagrangian subspaces of $\bigwedge^3{\mathbb C}^6$ modulo the natural action of $\mathrm{SL}_6$, call it $\mathfrak{M}$. This is a compactification of the moduli space of smooth double EPW-sextics and hence birational to the moduli space of HK $4$-folds of Type $K3^{[2]}$ polarized by a divisor of square $2$ for the Beauville-Bogomolov quadratic form. The author will determine the stable points. His work bears a strong analogy with the work of Voisin, Laza and Looijenga on moduli and periods of cubic $4$-folds.

Details

ISBNs :
9781470416966 and 9781470428242
Database :
eBook Index
Journal :
Moduli of Double EPW-Sextics
Publication Type :
eBook
Accession number :
1549296