1. Surface Recrystallization Model of Fully Amorphized C3H5-Molecular-Ion-Implanted Silicon Substrate
- Author
-
Koji Kobayashi, Ryosuke Okuyama, Takeshi Kadono, Ayumi Onaka-Masada, Ryo Hirose, Akihiro Suzuki, Sho Nagatomo, Yoshihiro Koga, Koji Sueoka, and Kazunari Kurita
- Subjects
molecular ion implantation ,solid phase epitaxial growth ,kinetic Monte Carlo simulation ,Crystallography ,QD901-999 - Abstract
The surface recrystallization model of the fully amorphized C3H5-molecular-ion-implanted silicon (Si) substrate is investigated. Transmission electron microscopy is performed to observe the amorphous/crystalline interface near the C3H5-molecular-ion-implanted Si substrate surface after the subsequent recovery thermal annealing treatment. At a depth of high-concentration carbon of approximately 4.8 × 1020 atoms/cm3, recrystallization from the crystalline template to the surface by solid-phase epitaxial growth is partially delayed, and the activation energy was estimated to be 2.79 ± 0.14 eV. The change in the crystalline fraction of the fully amorphized C3H5-molecular-ion-implanted Si substrate surface is quantitatively evaluated from the binding energy of Si 2p spectra by X-ray photoelectron spectroscopy. Using the Kolmogorov–Johnson–Mehl–Avrami equation, the surface recrystallization of the fully amorphized C3H5-molecular-ion-implanted Si substrate is assumed to proceed two-dimensionally, and its activation energy is obtained as 2.71 ± 0.28 eV without the effect of carbon. Technology computer-aided design (TCAD) process simulations calculate recrystallization under the effect of high-concentration carbon and demonstrate the reach of some crystalline regions to the surface first. In the fully amorphized C3H5-molecular-ion-implanted Si substrate, it is considered that recrystallization is partially delayed due to high-concentration carbon and surface recrystallization proceeds two-dimensionally from some crystalline regions reaching the surface first.
- Published
- 2024
- Full Text
- View/download PDF