Florent Langenfeld, David Hunter, Matthieu Montes, Karim Hammoudi, Daisuke Kihara, Feryal Windal, Yu-Kun Lai, Ekpo Otu, Paul L. Rosin, Stelios K. Mylonas, Petros Daras, Apostolos Axenopoulos, Halim Benhabiles, Reyer Zwiggelaar, Andrea Giachetti, Charles Christoffer, Adnane Cabani, Tunde Aderinwale, Yuxu Peng, Yonghuai Liu, Mahmoud Melkemi, Genki Terashi, Cardiff Univ, Sch Chem, Cardiff CF10 3XQ, S Glam, Wales, Purdue University [West Lafayette], Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Bio-Micro-Electro-Mechanical Systems - IEMN (BIOMEMS - IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Institut de Recherche en Informatique Mathématiques Automatique Signal (IRIMAS), Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA)), Université de Strasbourg (UNISTRA), Institut de Recherche en Systèmes Electroniques Embarqués (IRSEEM), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-École Supérieure d’Ingénieurs en Génie Électrique (ESIGELEC), Clinica Oculistica, Università degli Studi di Verona, Aberystwyth Univ, Inst Biol Environm & Rural Sci, Aberystwyth SY23 3EB, Dyfed, Wales, Young teachers growth plan project - Changsha University of Science Technology [2019QJCZ014], ATXN1-MED15 PPI project - GSRT Hellenic Foundation for Research and Innovation, European Research Council Executive Agency [640283], Laboratoire Génomique, bioinformatique et chimie moléculaire (GBCM), Conservatoire National des Arts et Métiers [CNAM] (CNAM), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM), School of Information Science and Engineering [Changsha], Central South University [Changsha], School of Computer Sciences & Informatics [Cardiff], Cardiff University, Università degli studi di Verona = University of Verona (UNIVR), Centre for Research and Technology Hellas (CERTH), Aberystwyth University, and Edge Hill University
[#17491] article suite à une conférence orale: 13th EG Euroworkshop on 3D object retrieval, 3DOR 2020, Graz, Austria, september 4-5, 2020; International audience; Proteins are natural modular objects usually composed of several domains, each domain bearing a specific function that is mediated through its surface, which is accessible to vicinal molecules. This draws attention to an understudied characteristic of protein structures: surface, that is mostly unexploited by protein structure comparison methods. In the present work, we evaluated the performance of six shape comparison methods, among which three are based on machine learning, to distinguish between 588 multi-domain proteins and to recreate the evolutionary relationships at the protein and species levels of the SCOPe database. The six groups that participated in the challenge submitted a total of 15 sets of results. We observed that the performance of all the methods significantly decreases at the species level, suggesting that shape-only protein comparison is challenging for closely related proteins. Even if the dataset is limited in size (only 588 proteins are considered whereas more than 160,000 protein structures are experimentally solved), we think that this work provides useful insights into the current shape comparison methods performance, and highlights possible limitations to large-scale applications due to the computational cost. (C) 2020 The Author(s). Published by Elsevier Ltd.