Back to Search Start Over

Surface-based protein domains retrieval methods from a SHREC2021 challenge

Authors :
Florent Langenfeld
Tunde Aderinwale
Charles Christoffer
Woong-Hee Shin
Genki Terashi
Xiao Wang
Daisuke Kihara
Halim Benhabiles
Karim Hammoudi
Adnane Cabani
Feryal Windal
Mahmoud Melkemi
Ekpo Otu
Reyer Zwiggelaar
David Hunter
Yonghuai Liu
Léa Sirugue
Huu-Nghia H. Nguyen
Tuan-Duy H. Nguyen
Vinh-Thuyen Nguyen-Truong
Danh Le
Hai-Dang Nguyen
Minh-Triet Tran
Matthieu Montès
Laboratoire Génomique, bioinformatique et chimie moléculaire (GBCM)
Conservatoire National des Arts et Métiers [CNAM] (CNAM)
HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)
Department of Computer Science [Purdue]
Purdue University [West Lafayette]
Suncheon National University [Suncheon, Corée du Sud]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)
Université catholique de Lille (UCL)-Université catholique de Lille (UCL)
Bio-Micro-Electro-Mechanical Systems - IEMN (BIOMEMS - IEMN)
Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)
JUNIA (JUNIA)
Université catholique de Lille (UCL)
Institut de Recherche en Informatique Mathématiques Automatique Signal - IRIMAS - UR 7499 (IRIMAS)
Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))
Université de Strasbourg (UNISTRA)
École Supérieure d’Ingénieurs en Génie Électrique (ESIGELEC)
Aberystwyth University
Edge Hill University
Vietnam National University - Ho Chi Minh City (VNU-HCM)
Léa Sirugue, Matthieu Montès and Florent Langenfeld are supported by the European Research Council Executive Agency under the research grant number 640,283. Daisuke Kihara acknowledges supports from the National Institutes of Health (R01GM133840, R01GM123055) and the National Science Foundation (DBI2003635, CMMI1825941, and MCB1925643). Charles Christoffer is supported by NIGMS-funded pre–doctoral fellowship (T32 GM132024). Huu-Nghia H. Nguyen, Tuan-Duy H. Nguyen, Vinh-Thuyen Nguyen-Truong, Danh Le, Hai-Dang Nguyen, and Minh-Triet Tran are supported by National University Ho Chi Minh City (VNU-HCM) (DS2020-42-01).
Source :
Journal of Molecular Graphics and Modelling, Journal of Molecular Graphics and Modelling, 2022, 111, pp.108103. ⟨10.1016/j.jmgm.2021.108103⟩, J Mol Graph Model
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

publication dans une revue suite à la communication hal-03467479 (SHREC 2021: surface-based protein domains retrieval); International audience; Proteins are essential to nearly all cellular mechanism and the effectors of the cells activities. As such, they often interact through their surface with other proteins or other cellular ligands such as ions or organic molecules. The evolution generates plenty of different proteins, with unique abilities, but also proteins with related functions hence similar 3D surface properties (shape, physico-chemical properties, …). The protein surfaces are therefore of primary importance for their activity. In the present work, we assess the ability of different methods to detect such similarities based on the geometry of the protein surfaces (described as 3D meshes), using either their shape only, or their shape and the electrostatic potential (a biologically relevant property of proteins surface). Five different groups participated in this contest using the shape-only dataset, and one group extended its pre-existing method to handle the electrostatic potential. Our comparative study reveals both the ability of the methods to detect related proteins and their difficulties to distinguish between highly related proteins. Our study allows also to analyze the putative influence of electrostatic information in addition to the one of protein shapes alone. Finally, the discussion permits to expose the results with respect to ones obtained in the previous contests for the extended method. The source codes of each presented method have been made available online.

Details

Language :
English
ISBN :
978-3-905674-22-4
978-3-03868-030-7
978-3-03868-053-6
978-3-03868-077-2
978-0-7695-2075-9
978-1-4503-7998-4
0-7695-2075-8
ISSN :
10933263
ISBNs :
9783905674224, 9783038680307, 9783038680536, 9783038680772, 9780769520759, 9781450379984, and 0769520758
Database :
OpenAIRE
Journal :
Journal of Molecular Graphics and Modelling, Journal of Molecular Graphics and Modelling, 2022, 111, pp.108103. ⟨10.1016/j.jmgm.2021.108103⟩, J Mol Graph Model
Accession number :
edsair.doi.dedup.....ba7369d71c9d741f052c44940c5409b2
Full Text :
https://doi.org/10.1016/j.jmgm.2021.108103⟩