114 results on '"Kac-Rice formula"'
Search Results
2. Upper Bound for the Conjunction Probability of Smooth Stationary Two-dimensional Gaussian Fields
- Author
-
Pham, Viet-Hung
- Published
- 2024
- Full Text
- View/download PDF
3. Fast and fair simultaneous confidence bands for functional parameters.
- Author
-
Liebl, Dominik and Reimherr, Matthew
- Subjects
SPORTS biomechanics ,CONFIDENCE regions (Mathematics) ,FUNCTIONAL analysis ,INFERENTIAL statistics ,DATA analysis - Abstract
Quantifying uncertainty using confidence regions is a central goal of statistical inference. Despite this, methodologies for confidence bands in functional data analysis are still underdeveloped compared to estimation and hypothesis testing. In this work, we present a new methodology for constructing simultaneous confidence bands for functional parameter estimates. Our bands possess a number of positive qualities: (1) they are not based on resampling and thus are fast to compute, (2) they are constructed under the fairness constraint of balanced false positive rates across partitions of the bands' domain which facilitates the typical global, but also novel local interpretations, and (3) they do not require an estimate of the full covariance function and thus can be used in the case of fragmentary functional data. Simulations show the excellent finite-sample behaviour of our bands in comparison to existing alternatives. The practical use of our bands is demonstrated in two case studies on sports biomechanics and fragmentary growth curves. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
4. An Interesting Class of Non-Kac Random Polynomials
- Author
-
Praharaj, Samya and Guha, Suman
- Published
- 2023
- Full Text
- View/download PDF
5. Expected number and height distribution of critical points of smooth isotropic Gaussian random fields
- Author
-
Cheng, Dan and Schwartzman, Armin
- Subjects
Applied Mathematics ,Mathematical Sciences ,Statistics ,boundary ,critical points ,Gaussian random fields ,GOE ,GOI ,height density ,isotropic ,Kac-Rice formula ,random matrices ,sphere ,15B52 ,60G15 ,60G60 ,Boundary ,Critical points ,Height density ,Isotropic ,Random matrices ,Sphere ,Econometrics ,Statistics & Probability - Abstract
We obtain formulae for the expected number and height distribution of critical points of smooth isotropic Gaussian random fields parameterized on Euclidean space or spheres of arbitrary dimension. The results hold in general in the sense that there are no restrictions on the covariance function of the field except for smoothness and isotropy. The results are based on a characterization of the distribution of the Hessian of the Gaussian field by means of the family of Gaussian orthogonally invariant (GOI) matrices, of which the Gaussian orthogonal ensemble (GOE) is a special case. The obtained formulae depend on the covariance function only through a single parameter (Euclidean space) or two parameters (spheres), and include the special boundary case of random Laplacian eigenfunctions.
- Published
- 2018
6. Kac-Rice formulas and the number of solutions of parametrized systems of polynomial equations.
- Author
-
Feliu, Elisenda and Sadeghimanesh, AmirHosein
- Subjects
- *
MONTE Carlo method , *NUMBER systems , *POLYNOMIALS , *CONTINUOUS distributions , *EQUATIONS - Abstract
Kac-Rice formulas express the expected number of elements a fiber of a random field has in terms of a multivariate integral. We consider here parametrized systems of polynomial equations that are linear in enough parameters, and provide a Kac-Rice formula for the expected number of solutions of the system when the parameters follow continuous distributions. Combined with Monte Carlo integration, we apply the formula to partition the parameter region according to the number of solutions or find a region in parameter space where the system has the maximal number of solutions. The motivation stems from the study of steady states of chemical reaction networks and gives new tools for the open problem of identifying the parameter region where the network has at least two positive steady states. We illustrate with numerous examples that our approach successfully handles a larger number of parameters than exact methods. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
7. Mean number and correlation function of critical points of isotropic Gaussian fields and some results on GOE random matrices.
- Author
-
Azaïs, Jean-Marc and Delmas, Céline
- Subjects
- *
STATISTICAL correlation , *RANDOM matrices , *RANDOM fields - Published
- 2022
- Full Text
- View/download PDF
8. On the optimization landscape of tensor decompositions.
- Author
-
Ge, Rong and Ma, Tengyu
- Subjects
- *
NP-hard problems , *LANDSCAPES , *RANDOM matrices , *SEARCH algorithms , *SET functions , *LATENT variables - Abstract
Non-convex optimization with local search heuristics has been widely used in machine learning, achieving many state-of-art results. It becomes increasingly important to understand why they can work for these NP-hard problems on typical data. The landscape of many objective functions in learning has been conjectured to have the geometric property that "all local optima are (approximately) global optima", and thus they can be solved efficiently by local search algorithms. However, establishing such property can be very difficult. In this paper, we analyze the optimization landscape of the random over-complete tensor decomposition problem, which has many applications in unsupervised learning, especially in learning latent variable models. In practice, it can be efficiently solved by gradient ascent on a non-convex objective. We show that for any small constant ε > 0 , among the set of points with function values (1 + ε) -factor larger than the expectation of the function, all the local maxima are approximate global maxima. Previously, the best-known result only characterizes the geometry in small neighborhoods around the true components. Our result implies that even with an initialization that is barely better than the random guess, the gradient ascent algorithm is guaranteed to solve this problem. However, achieving such a initialization with random guess would still require super-polynomial number of attempts. Our main technique uses Kac–Rice formula and random matrix theory. To our best knowledge, this is the first time when Kac–Rice formula is successfully applied to counting the number of local optima of a highly-structured random polynomial with dependent coefficients. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
9. Kac-Rice formula for transverse intersections.
- Author
-
Stecconi, Michele
- Abstract
We prove a generalized Kac-Rice formula that, in a well defined regular setting, computes the expected cardinality of the preimage of a submanifold via a random map by expressing it as the integral of a density. Our proof starts from scratch and although it follows the guidelines of the standard proofs of Kac-Rice formula, it contains some new ideas coming from the point of view of measure theory. Generalizing further, we extend this formula to any other type of counting measure, such as the intersection degree. We discuss in depth the specialization to smooth Gaussian random sections of a vector bundle. Here, the formula computes the expected number of points where the section meets a given submanifold of the total space, it holds under natural non-degeneracy conditions and can be simplified by using appropriate connections. Moreover, we point out a class of submanifolds, that we call sub-Gaussian, for which the formula is locally finite and depends continuously with respect to the covariance of the first jet. In particular, this applies to any notion of singularity of sections that can be defined as the set of points where the jet prolongation meets a given semialgebraic submanifold of the jet space. Various examples of applications and special cases are discussed. In particular, we report a new proof of the Poincaré kinematic formula for homogeneous spaces and we observe how the formula simplifies for isotropic Gaussian fields on the sphere. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
10. Triviality of the Geometry of Mixed p-Spin Spherical Hamiltonians with External Field.
- Author
-
Belius, David, Černý, Jiří, Nakajima, Shuta, and Schmidt, Marius A.
- Abstract
We study isotropic Gaussian random fields on the high-dimensional sphere with an added deterministic linear term, also known as mixed p-spin Hamiltonians with external field. We prove that if the external field is sufficiently strong, then the resulting function has trivial geometry, that is only two critical points. This contrasts with the situation of no or weak external field where these functions typically have an exponential number of critical points. We give an explicit threshold h c for the magnitude of the external field necessary for trivialization and conjecture h c to be sharp. The Kac–Rice formula is our main tool. Our work extends Fyodorov [14], which identified the trivial regime for the special case of pure p-spin Hamiltonians with random external field. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
11. Testing Gaussian process with applications to super-resolution.
- Author
-
Azaïs, Jean-Marc, De Castro, Yohann, and Mourareau, Stéphane
- Subjects
- *
GAUSSIAN processes , *GAUSSIAN measures , *RANDOM variables , *INDEPENDENT variables , *DECONVOLUTION (Mathematics) , *MATHEMATICAL convolutions - Abstract
This article introduces exact testing procedures on the mean of a Gaussian process X derived from the outcomes of ℓ 1 -minimization over the space of complex valued measures. The process X can be thought as the sum of two terms: first, the convolution between some kernel and a target atomic measure (mean of the process); second, a random perturbation by an additive centered Gaussian process. The first testing procedure considered is based on a dense sequence of grids on the index set of X and we establish that it converges (as the grid step tends to zero) to a randomized testing procedure: the decision of the test depends on the observation X and also on an independent random variable. The second testing procedure is based on the maxima and the Hessian of X in a grid-less manner. We show that both testing procedures can be performed when the variance is unknown (and the correlation function of X is known). These testing procedures can be used for the problem of deconvolution over the space of complex valued measures, and applications in frame of the Super-Resolution theory are presented. As a byproduct, numerical investigations may demonstrate that our grid-less method is more powerful (it detects sparse alternatives) than tests based on very thin grids. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
12. Local repulsion of planar Gaussian critical points.
- Author
-
Ladgham, Safa and Lachieze-Rey, Raphaël
- Subjects
- *
FACTORIALS , *RANDOM fields , *POINT processes - Abstract
We study the local repulsion between critical points of a stationary isotropic smooth planar Gaussian field. We show that the critical points can experience a soft repulsion which is maximal in the case of the random planar wave model, or a soft attraction of arbitrary high order. If the type of critical points is specified (extremum, saddle point), the points experience a hard local repulsion, that we quantify with the precise magnitude of the second factorial moment of the number of points in a small ball. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
13. Mean number and correlation function of critical points of isotropic Gaussian fields and some results on GOE random matrices
- Author
-
Jean-Marc Azaïs, Céline Delmas, Institut de Mathématiques de Toulouse UMR5219 (IMT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Unité de Mathématiques et Informatique Appliquées de Toulouse (MIAT INRA), Institut National de la Recherche Agronomique (INRA), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Unité de Mathématiques et Informatique Appliquées de Toulouse (MIAT INRAE), and Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
Statistics and Probability ,Isotropic Gaussian fields ,Applied Mathematics ,Probability (math.PR) ,Point processes ,Critical points ,Kac-Rice formula ,GOE matrices ,Gaussian fields ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Modeling and Simulation ,FOS: Mathematics ,Random matrices ,Mathematics - Probability - Abstract
Let $\mathcal{X}= \{X(t) : t \in \mathbb{R}^N \} $ be an isotropic Gaussian random field with real values.In a first part we study the mean number of critical points of $\mathcal{X}$ with index $k$ using random matrices tools.We obtain an exact expression for the probability density of the $k$th eigenvalue of a $N$-GOE matrix.We deduce some exact expressions for the mean number of critical points with a given index. In a second part we study attraction or repulsion between these critical points. A measure is the correlation function.We prove attraction between critical points when $N>2$, neutrality for $N=2$ and repulsion for $N=1$.The attraction between critical points that occurs when the dimension is greater than two is due to critical points with adjacent indexes.A strong repulsion between maxima and minima is proved. The correlation function between maxima (or minima) depends on the dimension of the ambient space.
- Published
- 2022
14. On the finiteness of the moments of the measure of level sets of random fields
- Author
-
Armentano, Diego, Azaïs, Jean-Marc, Dalmao, Federico, Léon, Jose R., Mordecki, Ernesto, Universidad de la República [Montevideo] (UCUR), Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées
- Subjects
[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Statistics and Probability ,Crofton formula ,Probability (math.PR) ,FOS: Mathematics ,shot noise process ,Moments of measure of level sets ,Rice formula ,Kac-Rice formula ,Moments of level sets ,Mathematics - Probability - Abstract
General conditions on smooth real valued random fields are given that ensure the finiteness of the moments of the measure of their level sets. As a by product a new generalized Kac-Rice formula (KRF) for the expectation of the measure of these level sets is obtained when the second moment can be uniformly bounded. The conditions involve (i) the differentiability of the trajectories up to a certain order k, (ii) the finiteness of the moments of the k-th partial derivatives of the field up to another order, (iii) the boundedness of the joint density of the field and some of its derivatives. Particular attention is given to the shot noise processes and fields. Other applications include stationary Gaussian processes, Chi-square processes and regularized diffusion processes. AMS2000 Classifications: Primary 60G60. Secondary 60G15.
- Published
- 2023
15. Non universality for the variance of the number of real roots of random trigonometric polynomials.
- Author
-
Bally, Vlad, Caramellino, Lucia, and Poly, Guillaume
- Subjects
- *
REAL numbers , *POLYNOMIALS , *TRIGONOMETRIC functions , *RANDOM variables , *GAUSSIAN distribution , *VARIANCES - Abstract
In this article, we consider the following family of random trigonometric polynomials p n (t , Y) = ∑ k = 1 n Y k 1 cos (k t) + Y k 2 sin (k t) for a given sequence of i.i.d. random variables Y k i , i ∈ { 1 , 2 } , k ≥ 1 , which are centered and standardized. We set N ([ 0 , π ] , Y) the number of real roots over [ 0 , π ] and N ([ 0 , π ] , G) the corresponding quantity when the coefficients follow a standard Gaussian distribution. We prove under a Doeblin's condition on the distribution of the coefficients that lim n → ∞ Var N n ([ 0 , π ] , Y) n = lim n → ∞ Var N n ([ 0 , π ] , G) n + 1 30 E Y 1 1 4 - 3. The latter establishes that the behavior of the variance is not universal and depends on the distribution of the underlying coefficients through their kurtosis. Actually, a more general result is proven in this article, which does not require that the coefficients are identically distributed. The proof mixes a recent result regarding Edgeworth expansions for distribution norms established in Bally et al. (Electron J Probab 23(45):1–51, 2018) with the celebrated Kac–Rice formula. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
16. VARIANCE OF THE VOLUME OF RANDOM REAL ALGEBRAIC SUBMANIFOLDS.
- Author
-
LETENDRE, THOMAS
- Subjects
- *
SUBMANIFOLDS , *HOLOMORPHIC functions , *HERMITIAN structures , *ANALYSIS of variance , *PROBABILITY theory , *BERGMAN kernel functions - Abstract
Let X be a complex projective manifold of dimension n defined over the reals, and let M denote its real locus. We study the vanishing locus Zsd in M of a random real holomorphic section sd of E ⊗Ld, where L → X is an ample line bundle and E → X is a rank r Hermitian bundle. When r ∈ {1, . . . ,n - 1}, we obtain an asymptotic of order dr-n2, as d goes to infinity, for the variance of the linear statistics associated with Zsd, including its volume. Given an open set U ⊂ M, we show that the probability that Zsd does not intersect U is a O of d -n2 when d goes to infinity. When n > 3, we also prove almost sure convergence for the linear statistics associated with a random sequence of sections of increasing degree. Our framework contains the case of random real algebraic submanifolds of RPn obtained as the common zero set of r independent Kostlan-Shub-Smale polynomials. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
17. How sharp are classical approximations for statistical applications?
- Author
-
Azaïs, Jean-Marc and Mourareau, Stéphane
- Subjects
- *
STOCHASTIC processes , *EULER characteristic , *POISSON processes , *MONTE Carlo method , *TEST validity - Abstract
This paper aims at comparing theoretical approximations of the tail of the maximum of stochastic processes and the corresponding numerical evaluations. More particularly, we focus on the Pickands or double sum method, the Rice method, the Euler Characteristic method and a new one called the Poisson method. The numerical evaluation, performed using mainly Quasi Monte-Carlo integration and adaptations of the programs of Genz, show the domains of validity of each method. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
18. Central Limit Theorem for the volume of the zero set of Kostlan-Shub-Smale random polynomial systems
- Author
-
Azaïs, Jean-Marc, Armentano, Diego, Dalmao, Federico, León, José R., Universidad de la República [Montevideo] (UDELAR), Institut de Mathématiques de Toulouse UMR5219 (IMT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Departamento de Matemática y Estadística del Litoral, Universidad de la República de Salto, and Universidad Central de Venezuela (UCV)
- Subjects
Statistics and Probability ,Kostlan–Shub–Smale random polynomial systems ,Numerical Analysis ,Control and Optimization ,Algebra and Number Theory ,Mathematics::Dynamical Systems ,Applied Mathematics ,General Mathematics ,Probability (math.PR) ,Co-area formula ,Kac-Rice formula ,Primary: 60F05, 30C15. Secondary: 60G60, 65H10 ,FOS: Mathematics ,[MATH]Mathematics [math] ,Mathematics - Probability ,Central Limit Theorem - Abstract
We state the Central Limit Theorem, as the degree goes to infinity, for the normalized volume of the zero set of a rectangular Kostlan-Shub-Smale random polynomial system. This paper is a continuation of {\it Central Limit Theorem for the number of real roots of Kostlan Shub Smale random polynomial systems} by the same authors in which the square case was considered. Our main tools are the Kac-Rice formula for the second moment of the volume of the zero set and an expansion of this random variable into the It\^o-Wiener Chaos., Comment: 17 pages, continuation of arXiv:1801.06331
- Published
- 2022
19. Fluctuations of the total number of critical points of random spherical harmonics.
- Author
-
Cammarota, V. and Wigman, I.
- Subjects
- *
CRITICAL point (Thermodynamics) , *SPHERICAL harmonics , *EIGENFUNCTIONS , *EIGENVALUES , *RANDOM fields - Abstract
We determine the asymptotic law for the fluctuations of the total number of critical points of random Gaussian spherical harmonics in the high degree limit. Our results have implications on the sophistication degree of an appropriate percolation process for modelling nodal domains of eigenfunctions on generic compact surfaces or billiards. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
20. Some contributions to the universality of zeros of random trigonometric functions
- Author
-
Pautrel, Thibault, Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Université de Rennes, Guillaume Poly, Jürgen Angst, and ANR-11-LABX-0020,LEBESGUE,Centre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation(2011)
- Subjects
Nodal set ,Formule de Kac-Rice ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Global universality ,Processus gaussiens ,Ensemble nodal ,Gaussian processes ,Kac-Rice formula ,Stochastic analysis ,Universalité globale ,Analyse stochastique - Abstract
We study in this thesis the asymptotic behavior (almost-sure, in distribution, on average) of the random variable counting the number of zeros of random trigonometric functions on a given interval. We specifically investigate the universality phenomenon, i.e. examine if this behavior does or does not depend on the law of the random coefficients, their correlation or the influence of the basis functions. In order to achieve this, we work under the framework of dependent stationary Gaussian processes, for which the dependency can be translated in terms of spectral measure. We show that the nature of this latter has a great influence on the asymptotic behavior for the number of zeros and can even - under specific assumptions - lead to universal results as well as non-universal ones. Using tools from stochastic analysis such that Kac-Rice formula or extending some techniques drawn from Salem and Zygmund’s work in the 1950s, we exhibit global universal asymptotics, on average and almost-sure.; On s’intéresse dans cette thèse au comportement asymptotique (presque-sûr, en loi, en moyenne) de la variable aléatoire comptant le nombre de zéros de fonctions trigonométriques sur un intervalle donné. On examine en outre si l’on a un phénomène d’universalité, c’est-à-dire si ce nombre dépend ou non de la loi des coefficients, de leur corrélation, ou encore des fonctions de base. Pour cela, on se place dans le cadre de coefficients gaussiens stationnaires dépendants, pour lesquels la dépendance s’exprime à travers la mesure spectrale. On montre alors que la nature de cette dernière influe grandement sur le comportement asymptotique du nombre de zéros et peut même, sous certaines hypothèses, aboutir tant à des résultats d’universalité qu’à des phénomènes non-universels. A l’aide d’outils d’analyse stochastique tels que la formule de Kac-Rice ou encore l’extension des techniques employées par Salem et Zygmund dans les années 1950, on exhibe des asymptotiques universelles globales en moyenne et presque-sûres.
- Published
- 2022
21. On the Distribution of the Critical Values of Random Spherical Harmonics.
- Author
-
Cammarota, Valentina, Marinucci, Domenico, and Wigman, Igor
- Abstract
We study the limiting distribution of critical points and extrema of random spherical harmonics, in the high-energy limit. In particular, we first derive the density functions of extrema and saddles; we then provide analytic expressions for the variances and we show that the empirical measures in the high-energy limits converge weakly to their expected values. Our arguments require a careful investigation of the validity of the Kac-Rice formula in nonstandard circumstances, entailing degeneracies of covariance matrices for first and second derivatives of the processes being analyzed. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
22. On the zeros of random harmonic polynomials: The truncated model.
- Author
-
Lerario, Antonio and Lundberg, Erik
- Subjects
- *
RANDOM polynomials , *HARMONIC analysis (Mathematics) , *PHASE transitions , *POWER law (Mathematics) , *MATHEMATICAL analysis - Abstract
Motivated by Wilmshurst's conjecture and more recent work of W. Li and A. Wei [17] , we determine asymptotics for the number of zeros of random harmonic polynomials sampled from the truncated model , recently proposed by J. Hauenstein, D. Mehta, and the authors [10] . Our results confirm (and sharpen) their ( 3 / 2 ) -powerlaw conjecture [10] that had been formulated on the basis of computer experiments; this outcome is in contrast with that of the model studied in [17] . For the truncated model we also observe a phase-transition in the complex plane for the Kac–Rice density. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
23. A stochastic Gauss-Bonnet-Chern formula.
- Author
-
Nicolaescu, Liviu
- Subjects
- *
GAUSS-Bonnet theorem , *STOCHASTIC analysis , *GAUSSIAN measures , *VECTOR bundles , *MATHEMATICAL formulas - Abstract
We prove that a Gaussian ensemble of smooth random sections of a real vector bundle $$E$$ over compact manifold $$M$$ canonically defines a metric on $$E$$ together with a connection compatible with it. Additionally, we prove a refined Gauss-Bonnet theorem stating that if the bundle $$E$$ and the manifold $$M$$ are oriented, then the Euler form of the above connection can be identified, as a current, with the expectation of the random current defined by the zero-locus of a random section in the above Gaussian ensemble. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
24. Central Limit Theorem for the volume of the zero set of Kostlan-Shub-Smale random polynomial systems.
- Author
-
Armentano, Diego, Azaïs, Jean-Marc, Dalmao, Federico, and León, José R.
- Subjects
- *
CENTRAL limit theorem , *RANDOM sets , *POLYNOMIALS - Abstract
We establish the Central Limit Theorem, as the degree goes to infinity, for the normalized volume of the zero set of a rectangular Kostlan–Shub–Smale random polynomial system. This paper is a continuation of Central Limit Theorem for the number of real roots of Kostlan–Shub–Smale random polynomial systems by the same authors in which the case of square systems was considered. Our main tools are Kac-Rice formula and an expansion of the volume of the level set into the Itô-Wiener Chaos. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
25. Orientation Maps in V1 and Non-Euclidean Geometry.
- Author
-
Afgoustidis, Alexandre
- Subjects
- *
VISUAL cortex , *EUCLIDEAN geometry , *INFORMATION processing , *NEURAL circuitry , *GAUSSIAN processes , *MATHEMATICAL decomposition , *MATHEMATICAL singularities - Abstract
In the primary visual cortex, the processing of information uses the distribution of orientations in the visual input: neurons react to some orientations in the stimulus more than to others. In many species, orientation preference is mapped in a remarkable way on the cortical surface, and this organization of the neural population seems to be important for visual processing. Now, existing models for the geometry and development of orientation preference maps in higher mammals make a crucial use of symmetry considerations. In this paper, we consider probabilistic models for V1 maps from the point of view of group theory; we focus on Gaussian random fields with symmetry properties and review the probabilistic arguments that allow one to estimate pinwheel densities and predict the observed value of p. Then, in order to test the relevance of general symmetry arguments and to introduce methods which could be of use in modeling curved regions, we reconsider this model in the light of group representation theory, the canonical mathematics of symmetry. We show that through the Plancherel decomposition of the space of complex-valued maps on the Euclidean plane, each infinite-dimensional irreducible unitary representation of the special Euclidean group yields a unique V1-like map, and we use representation theory as a symmetry-based toolbox to build orientation maps adapted to the most famous non- Euclidean geometries, viz. spherical and hyperbolic geometry. We find that most of the dominant traits of V1 maps are preserved in these; we also study the link between symmetry and the statistics of singularities in orientation maps, and show what the striking quantitative characteristics observed in animals become in our curved models. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
26. Monochromaticity of Orientation Maps in V1 Implies Minimum Variance for Hypercolumn Size.
- Author
-
Afgoustidis, Alexandre
- Subjects
- *
VISUAL cortex , *SENSORY neurons , *BRAIN mapping , *SENSORY perception , *STIMULUS & response (Psychology) , *ANALYSIS of variance , *STATISTICAL correlation - Abstract
In the primary visual cortex of many mammals, the processing of sensory information involves recognizing stimuli orientations. The repartition of preferred orientations of neurons in some areas is remarkable: a repetitive, non-periodic, layout. This repetitive pattern is understood to be fundamental for basic non-local aspects of vision, like the perception of contours, but important questions remain about its development and function. We focus here on Gaussian Random Fields, which provide a good description of the initial stage of orientation map development and, in spite of shortcomings we will recall, a computable framework for discussing general principles underlying the geometry of mature maps. We discuss the relationship between the notion of column spacing and the structure of correlation spectra; we prove formulas for the mean value and variance of column spacing, and we use numerical analysis of exact analytic formulae to study the variance. Referring to studies by Wolf, Geisel, Kaschube, Schnabel, and coworkers, we also show that spectral thinness is not an essential ingredient to obtain a pinwheel density of p, whereas it appears as a signature of Euclidean symmetry. The minimum variance property associated to thin spectra could be useful for information processing, provide optimal modularity for V1 hypercolumns, and be a first step toward a mathematical definition of hypercolumns. A measurement of this property in real maps is in principle possible, and comparison with the results in our paper could help establish the role of our minimum variance hypothesis in the development process. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
27. Level crossings and turning points of random hyperbolic polynomials
- Author
-
K. Farahmand and P. Hannigan
- Subjects
Gaussian process ,number of real roots ,Kac-Rice formula ,normal density ,covariance matrix. ,Mathematics ,QA1-939 - Abstract
In this paper, we show that the asymptotic estimate for the expected number of K-level crossings of a random hyperbolic polynomial a1sinhx+a2sinh2x+⋯+ansinhnx, where aj(j=1,2,…,n) are independent normally distributed random variables with mean zero and variance one, is (1/π)logn. This result is true for all K independent of x, provided K≡Kn=O(n). It is also shown that the asymptotic estimate of the expected number of turning points for the random polynomial a1coshx+a2cosh2x+⋯+ancoshnx, with aj(j=1,2,…,n) as before, is also (1/π)logn.
- Published
- 1999
- Full Text
- View/download PDF
28. Zeros of smooth stationary Gaussian processes
- Author
-
Michele Ancona, Thomas Letendre, School of Mathematical Sciences [Tel Aviv], Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University [Tel Aviv]-Tel Aviv University [Tel Aviv], Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Israeli Science Foundation, French National Research Agency (ANR), ANR-17-CE40-0008,UNIRANDOM,Universalité pour les domaines nodaux aléatoires(2017), ANR-17-CE40-0011,SpInQS,Géométrie spectrale de systèmes quantiques intermédiaires(2017), Laboratoire de Mathématiques d'Orsay (LMO), and Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Statistics and Probability ,Kac-Rice formula ,01 natural sciences ,Combinatorics ,010104 statistics & probability ,Counting measure ,Law of large numbers ,FOS: Mathematics ,Almost surely ,0101 mathematics ,Gaussian process ,Central Limit Theorem ,Mathematics ,Central limit theorem ,Law of Large Numbers ,Lebesgue measure ,MSC 2020: 60F05, 60F15, 60F17, 60F25, 60G15, 60G55, 60G57 ,Probability (math.PR) ,010102 general mathematics ,Order (ring theory) ,k-point function ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Distribution (mathematics) ,central moments ,Central moment ,Statistics, Probability and Uncertainty ,Mathematics - Probability ,clustering - Abstract
International audience; Let $f:\mathbb{R} \to \mathbb{R}$ be a stationary centered Gaussian process. For any $R>0$, let $\nu_R$ denote the counting measure of $\{x \in \mathbb{R} \mid f(Rx)=0\}$. In this paper, we study the large $R$ asymptotic distribution of $\nu_R$. Under suitable assumptions on the regularity of $f$ and the decay of its correlation function at infinity, we derive the asymptotics as $R \to +\infty$ of the central moments of the linear statistics of $\nu_R$. In particular, we derive an asymptotics of order $R^\frac{p}{2}$ for the $p$-th central moment of the number of zeros of $f$ in $[0,R]$. As an application, we derive a functional Law of Large Numbers and a functional Central Limit Theorem for the random measures~$\nu_R$. More precisely, after a proper rescaling, $\nu_R$ converges almost surely towards the Lebesgue measure in weak-$*$ sense. Moreover, the fluctuation of $\nu_R$ around its mean converges in distribution towards the standard Gaussian White Noise. The proof of our moments estimates relies on a careful study of the $k$-point function of the zero point process of~$f$, for any $k \geq 2$. Our analysis yields two results of independent interest. First, we derive an equivalent of this $k$-point function near any point of the large diagonal in~$\mathbb{R}^k$, thus quantifying the short-range repulsion between zeros of $f$. Second, we prove a clustering property which quantifies the long-range decorrelation between zeros of $f$.
- Published
- 2021
29. On real zeros of random polynomials with hyperbolic elements
- Author
-
K. Farahmand and M. Jahangiri
- Subjects
Number of real zeros ,Kac-Rice formula ,random algebraic polynomial ,random trigonometric polynomial. ,Mathematics ,QA1-939 - Abstract
This paper provides the asymptotic estimate for the expected number of real zeros of a random hyperbolic polynomial g1coshx+2g2cosh2x+…+ngncoshnx where gj,(j=1,2,…,n) are independent normally distributed random variables with mean zero and variance one. It is shown that for sufficiently large n this asymptotic value is (1/π)logn.
- Published
- 1998
- Full Text
- View/download PDF
30. On the absolute continuity of random nodal volumes
- Author
-
Guillaume Poly, Jürgen Angst, Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), ANR-17-CE40-0008,UNIRANDOM,Universalité pour les domaines nodaux aléatoires(2017), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)
- Subjects
Statistics and Probability ,Pure mathematics ,Dimension (graph theory) ,Type (model theory) ,symbols.namesake ,60H07 ,30C15 ,FOS: Mathematics ,Nabla symbol ,[MATH]Mathematics [math] ,Gaussian process ,Nodal volume ,Mathematics ,Lebesgue measure ,Probability (math.PR) ,Absolute continuity ,Kac–Rice formula ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Distribution (mathematics) ,symbols ,absolute continuity ,Statistics, Probability and Uncertainty ,26C10 ,42A05 ,Mathematics - Probability ,Sign (mathematics) - Abstract
International audience; We study the absolute continuity with respect to the Lebesgue measure of the distribution of the nodal volume associated with a smooth, non-degenerated and stationary Gaussian field $(f(x), {x \in \mathbb R^d})$. Under mild conditions, we prove that in dimension $d\geq 3$, the distribution of the nodal volume has an absolutely continuous component plus a possible singular part. This singular part is actually unavoidable baring in mind that some Gaussian processes have a positive probability to keep a constant sign on some compact domain. Our strategy mainly consists in proving closed Kac--Rice type formulas allowing one to express the volume of the set $\{f =0\}$ as integrals of explicit functionals of $(f,\nabla f,\text{Hess}(f))$ and next to deduce that the random nodal volume belongs to the domain of a suitable Malliavin gradient. The celebrated Bouleau--Hirsch criterion then gives conditions ensuring the absolute continuity.
- Published
- 2020
31. The Expected Number of Real Zeros of Algebraic Polynomials with Dependent and Non-Identical Random Coefficients.
- Author
-
Nezakati, A. and Farahmand, K.
- Subjects
- *
POLYNOMIALS , *ROOTS of equations , *RANDOM variables , *DEPENDENCE (Statistics) , *NUMERICAL analysis , *REAL numbers , *MATHEMATICAL sequences - Abstract
This article provides an asymptotic formula for the expected number of real zeros of a polynomial of the form [image omitted] for large n. The coefficients [image omitted] are assumed to be a sequence of dependent normally distributed random variables with E(aj(ω)) = 0, var(aj(ω)) = 1 and cov(ai(ω), aj(ω)) = ρ, 0 < ρ <1. We show that for the above dependent case this expected number is half that for the independent case. This behavior is similar to that of classical random algebraic polynomials. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
32. EXPECTED NUMBER OF REAL ZEROS OF A RANDOM POLYNOMIAL WITH INDEPENDENT IDENTICALLY DISTRIBUTED SYMMETRIC LONG-TAILED COEFFICIENTS.
- Author
-
SHEPP, L. and FARAHMAND, K.
- Subjects
- *
RANDOM polynomials , *SYMMETRIC functions , *BINOMIAL coefficients , *STOCHASTIC processes , *MATHEMATICAL formulas - Abstract
We show that the expected number of real zeros of the nth degree polynomial with real independent identically distributed coefficients with common characteristic function Φ(z) = e-A(ln∣1/z∣)-a for 0< ∣z∣ < 1 and Φ(0) = 1, Φ(z) ≡0 for 1 ≦ ∣z∣ < ∞, with 1 < a and A ≧ a(a-1), is (a - 1)/(a - ½)log n asymptotically as n → ∞. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
33. Real Zeros of Algebraic Polynomials with Dependent Random Coefficients.
- Author
-
NEZAKATI, A. and FARAHMAND, K.
- Subjects
- *
POLYNOMIALS , *ZERO (The number) , *MULTILEVEL models , *ALGEBRA , *CARDINAL numbers - Abstract
The expected number of real zeros of polynomials a0 + a1x + a2x2 +...+an-1xn-1 with random coefficients is well studied. For n large and for the normal zero mean independent coefficients, irrespective of the distribution of coefficients, this expected number is known to be asymptotic to (2/π)log n. For the dependent cases studied so far it is shown that this asymptotic value remains O(log n). In this article, we show that when cov(ai, aj) = 1 - |i - j|/n, for i = 0,..., n - 1 and j = 0,..., n - 1, the above expected number of real zeros reduces significantly to O(log n)1/2. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
34. Covariance of the Number of Real Zeros of a Random Algebraic Polynomial with Binomial Elements.
- Author
-
Farahmand, K. and Nezakati, A.
- Subjects
- *
ZERO (The number) , *ALGEBRA , *POLYNOMIALS , *RANDOM variables , *MATHEMATICS - Abstract
This paper provides a formula to be used for obtaining the variance of the number of real zeros of random algebraic polynomial . The expected number of real zeros of this type of polynomial is known. An easy modification of this formula leads to a formula for the covariance for the number of real zeros in any two disjoint intervals. Using the latter, we show the covariance of the number of real zeros, in any two disjoint interval that can be obtained. To this end, we assume a normal standard distribution for the coefficients a j 's, j = 0, 1, 2,..., n . Although we give a formula for the variance, the evaluation of the asymptotic value for the variance remains our main task for future work. [ABSTRACT FROM AUTHOR]
- Published
- 2006
- Full Text
- View/download PDF
35. On the Expected Number of Level Crossings of Random Trigonometric Polynomials.
- Author
-
Farahmand, K. and Shaposhnikov, A.
- Subjects
- *
POLYNOMIALS , *CLUSTER analysis (Statistics) , *MATHEMATICAL statistics , *PROBABILITY theory , *RANDOM variables - Abstract
This paper provides an asymptotic estimate for the expected number of level-crossings of random trigonometric polynomials a 0 (ω) + a 1 (ω)cosΘ + ··· + a n (ω)cos n Θ, where a j (ω), j = 0,..., n are k groups of independent normally distributed random variables with means μ i and variances , i = 1,..., k . It is shown that in order to obtain our result we need charac-teristics, namely μ i and , i = 1,..., k , to be any bounded absolute constants. [ABSTRACT FROM AUTHOR]
- Published
- 2005
- Full Text
- View/download PDF
36. Algebraic Polynomials with Non-identical Random Coefficients.
- Author
-
Farahmand, K. and Jahangiri, Jay
- Abstract
The asymptotic estimate for the expected number of real zeros of a random algebraic polynomial $$Q_n(x,\omega)=a_o(\omega){n\choose 0}+a_1(\omega){n\choose 1}x+a_2(\omega){n\choose 2}x^2+\cdots + a_n(\omega){n\choose n}x^n$$is known. The identical random coefficients a
j (ω) are normally distributed defined on a probability space $$(\Omega, \Pr, \mathcal{A})$$, ω ∈Ω. The estimate for the expected number of zeros of the derivative of the above polynomial with respect to x is also known, which gives the expected number of maxima and minima of Qn ( x, ω). In this paper we provide the asymptotic value for the expected number of zeros of the integration of Qn ( x,ω) with respect to x. We give the geometric interpretation of our results and discuss the difficulties which arise when we consider a similar problem for the case of $$a_0(\omega)+a_1(\omega)x+a_2(\omega)x^2+\cdots + a_n(\omega)x^n$$. [ABSTRACT FROM AUTHOR]- Published
- 2005
- Full Text
- View/download PDF
37. The expected number of level crossings of random trigonometric polynomials
- Author
-
Farahmand, K. and Shaposhnikov, A.
- Subjects
- *
MATHEMATICAL statistics , *RANDOM variables , *POLYNOMIALS , *VARIANCES - Abstract
Abstract: This paper provides a new result on the asymptotic estimate for the expected number of mml-level crossings of a random trigonometric polynomialmml l cos x + α2 cos 2x + . + αn cos nx, where mml, areindependent random variables with mean 0 and variance 1. It is shown that in the case of mml the actual error term is the same as in the case of K = 0 and is equal to O(1). [Copyright &y& Elsevier]
- Published
- 2004
- Full Text
- View/download PDF
38. Exceedence Measure of Classes of Algebraic Polynomials.
- Author
-
Farahmand, K.
- Abstract
There is both mathematical and physical interest in the behaviour of the polynomial of the form $$a_0 + a_1 (_{\text{1}}^n {\kern 1pt} )^{1/2} x + a_2 (_{\text{2}}^n {\kern 1pt} )^{1/2} x^2 + \cdots + a_n (_n^n {\kern 1pt} )^{1/2} x^n $$ . The coefficients a
j , j = 0,..., n are assumed to be independent normally distributed random variables with mean zero and variance σ2 . In this paper by using the motion of exceedence measure for stochastic processes, for n large, we derive an asymptotic estimate for the expected area of the curve representing the above polynomial cut off by the x-axis. We show that our method can be used to obtain results for similar random polynomials. [ABSTRACT FROM AUTHOR]- Published
- 2003
- Full Text
- View/download PDF
39. Zeros of a random algebraic polynomial with coefficient means in geometric progression
- Author
-
Farahmand, K., Flood, P., and Hannigan, P.
- Subjects
- *
GAUSSIAN processes , *RANDOM polynomials - Abstract
This paper provides the mathematical expectation for the number of real zeros of an algebraic polynomial with non-identical random coefficients. We assume that the coefficients
{aj}n−1j=0 of the polynomialT(x)=a0+a1x+a2x2+⋯+an−1xn−1 are normally distributed, with meanE(aj)=μj+1 , whereμ≠0 , and constant non-zero variance. It is shown that the behaviour of the random polynomial is independent of the variance on the interval(−1,1) ; it differs, however, for the cases of&z.sfnc;μ&z.sfnc;<1 and&z.sfnc;μ&z.sfnc;>1 . On the intervals(−∞,−1) and(1,∞) we find the expected number of real zeros is governed by an interesting relationship between the means of the coefficients and their common variance. Our result is consistent with those of previous works for identically distributed coefficients, in that the expected number of real zeros forμ≠0 is half of that forμ=0 . [Copyright &y& Elsevier]- Published
- 2002
- Full Text
- View/download PDF
40. Roots of Kostlan polynomials: moments, strong Law of Large Numbers and Central Limit Theorem
- Author
-
Michele Ancona, Thomas Letendre, School of Mathematical Sciences [Tel Aviv], Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University [Tel Aviv]-Tel Aviv University [Tel Aviv], Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Israeli Science Foundation (ISF Grants 382/15 and 501/18), Agence Nationale de la Recherche (ANR-17-CE40-0008 et ANR-17-CE40-0011), ANR-17-CE40-0008,UNIRANDOM,Universalité pour les domaines nodaux aléatoires(2017), ANR-17-CE40-0011,SpInQS,Géométrie spectrale de systèmes quantiques intermédiaires(2017), Institut de Recherche Mathématique Avancée (IRMA), Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Laboratoire de Mathématiques d'Orsay (LMO), and Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Method of moments ,Ocean Engineering ,Kac-Rice formula ,01 natural sciences ,Elliptic polynomials ,Mathematics - Algebraic Geometry ,010104 statistics & probability ,Mathematics - Metric Geometry ,60F05 ,FOS: Mathematics ,0101 mathematics ,Algebraic Geometry (math.AG) ,[MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG] ,MSC 2020: 14P99, 32L05, 60F05, 60F15, 60G15, 60G57 ,Central Limit Theorem ,Kostlan polynomials ,Law of Large Numbers ,010102 general mathematics ,Probability (math.PR) ,Complex Fubini-Study model ,Method of moments Mathematics Subject Classification 2010: 14P25 ,Metric Geometry (math.MG) ,MSC 2010: 14P99, 32L05, 60F05, 60F15, 60G15, 60G57 ,16. Peace & justice ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,60G15 ,60G57 ,60F15 ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,32L05 ,Mathematics - Probability - Abstract
We study the number of real roots of a Kostlan random polynomial of degree $d$ in one variable. More generally, we are interested in the distribution of the counting measure of the set of real roots of such a polynomial. We compute the asymptotics of the central moments of any order of these random variables, in the large degree limit. As a consequence, we prove that these quantities satisfy a strong Law of Large Numbers and a Central Limit Theorem. In particular, the real roots of a Kostlan polynomial almost surely equidistribute as the degree diverges. Moreover, the fluctuations of the counting measure of this random set around its mean converge in distribution to the Gaussian White Noise. More generally, our results hold for the real zeros of a random real section of a line bundle of degree d over a real projective curve, in the complex Fubini--Study model., Comment: Final version, published in Ann. H. Lebesgue
- Published
- 2019
41. Necessary and sufficient conditions for the finiteness of the second moment of the measure of level sets
- Author
-
José R. León, Jean-Marc Azaïs, Institut de Mathématiques de Toulouse UMR5219 (IMT), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Instituto de Matemática y Estadística Rafael Laguardia [Montevideo] (IMERL), Universidad de la República [Montevideo] (UCUR), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), and Universidad de la República [Montevideo] (UDELAR)
- Subjects
Statistics and Probability ,Pure mathematics ,Moments ,Scalar (mathematics) ,Second moment of area ,Kac-Rice formula ,01 natural sciences ,Measure (mathematics) ,Omega ,Gaussian random field ,010104 statistics & probability ,symbols.namesake ,Level set ,Random fields 2000 Mathematics Subject Classification: 60G15 ,FOS: Mathematics ,0101 mathematics ,Gaussian process ,Mathematics ,60G60 ,Random field ,010102 general mathematics ,Probability (math.PR) ,Level Sets ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,60G15 ,symbols ,random fields ,Statistics, Probability and Uncertainty ,Mathematics - Probability - Abstract
For a smooth vectorial stationary Gaussian random field, $X:\Omega \times \mathbb {R}^{d}\to \mathbb {R}^{d}$, we provided necessary conditions to have a finite second moment for the number of roots of $X(t)-u$. Then, under a more restrictive hypothesis, some sufficient conditions were also given. The results were obtained using a method of proof inspired the one obtained by D. Geman for stationary Gaussian processes. Afterward, the same method is applied to the number of critical points of a scalar random field and to the level set of a vectorial process, $X:\Omega \times \mathbb {R}^{D}\to \mathbb {R}^{d}$, with $D>d$.
- Published
- 2019
42. Non universality for the variance of the number of real roots of random trigonometric polynomials
- Author
-
Guillaume Poly, Vlad Bally, Lucia Caramellino, Laboratoire d'Analyse et de Mathématiques Appliquées (LAMA), Université Paris-Est Marne-la-Vallée (UPEM)-Fédération de Recherche Bézout-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Mathematical Risk Handling (MATHRISK), Université Paris-Est Marne-la-Vallée (UPEM)-École des Ponts ParisTech (ENPC)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Dipartimento di Matematica [Rome], Università degli Studi di Roma Tor Vergata [Roma], Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, ANR-11-LABX-0020,LEBESGUE,Centre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation(2011), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Fédération de Recherche Bézout-Université Paris-Est Marne-la-Vallée (UPEM), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-AGROCAMPUS OUEST-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Analyse et de Mathématiques Appliquées ( LAMA ), Université Paris-Est Marne-la-Vallée ( UPEM ) -Fédération de Recherche Bézout-Université Paris-Est Créteil Val-de-Marne - Paris 12 ( UPEC UP12 ) -Centre National de la Recherche Scientifique ( CNRS ), Mathematical Risk Handling ( MATHRISK ), Inria de Paris, Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -École des Ponts ParisTech ( ENPC ) -Université Paris-Est Marne-la-Vallée ( UPEM ), Institut de Recherche Mathématique de Rennes ( IRMAR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 ), and Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS )
- Subjects
Statistics and Probability ,Random trigonometric polynomial ,Kac-Rice formula ,01 natural sciences ,Combinatorics ,010104 statistics & probability ,60G50, 60F05 ,FOS: Mathematics ,Random trigonometric polynomials ,0101 mathematics ,Mathematics ,Small ball estimate ,Real roots ,010102 general mathematics ,Probability (math.PR) ,Kac–Rice formula ,Settore MAT/06 - Probabilita' e Statistica Matematica ,Universality (dynamical systems) ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Edgeworth expansion for non smooth functions ,Small balls estimates ,Statistics, Probability and Uncertainty ,Trigonometry ,[ MATH.MATH-PR ] Mathematics [math]/Probability [math.PR] ,Random variable ,Analysis ,Mathematics - Probability - Abstract
In this article, we consider the following family of random trigonometric polynomials $$p_n(t,Y)=\sum _{k=1}^n Y_{k}^1 \cos (kt)+Y_{k}^2\sin (kt)$$ for a given sequence of i.i.d. random variables $$Y^i_{k}$$ , $$i\in \{1,2\}$$ , $$k\ge 1$$ , which are centered and standardized. We set $${\mathcal {N}}([0,\pi ],Y)$$ the number of real roots over $$[0,\pi ]$$ and $${\mathcal {N}}([0,\pi ],G)$$ the corresponding quantity when the coefficients follow a standard Gaussian distribution. We prove under a Doeblin’s condition on the distribution of the coefficients that $$\begin{aligned} \lim _{n\rightarrow \infty }\frac{\text {Var}\left( {\mathcal {N}}_n([0,\pi ],Y)\right) }{n} =\lim _{n\rightarrow \infty }\frac{\text {Var}\left( {\mathcal {N}}_n([0,\pi ],G)\right) }{n} +\frac{1}{30}\left( {\mathbb {E}}\left( \left( Y_{1}^1\right) ^4\right) -3\right) . \end{aligned}$$ The latter establishes that the behavior of the variance is not universal and depends on the distribution of the underlying coefficients through their kurtosis. Actually, a more general result is proven in this article, which does not require that the coefficients are identically distributed. The proof mixes a recent result regarding Edgeworth expansions for distribution norms established in Bally et al. (Electron J Probab 23(45):1–51, 2018) with the celebrated Kac–Rice formula.
- Published
- 2019
43. How sharp are classical approximations for statistical applications?
- Author
-
Stéphane Mourareau, Jean-Marc Azaïs, Institut de Mathématiques de Toulouse UMR5219 (IMT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Statistics and Probability ,Approximations of π ,Stochastic process ,Euler characteristic method ,010102 general mathematics ,Kac-Rice formula ,Poisson distribution ,01 natural sciences ,010104 statistics & probability ,symbols.namesake ,Pickands method ,and phrases: Gaussian Process ,[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] ,Euler characteristic ,symbols ,Applied mathematics ,0101 mathematics ,Gaussian Process ,Focus (optics) ,Gaussian process ,Mathematics - Abstract
This paper aims at comparing theoretical approximations of the tail of the maximum of stochastic processes and the corresponding numerical evaluations. More particularly, we focus on the Pickands or double sum method, the Rice method, the Euler Characteristic method and a new one called the Poisson method. The numerical evaluation, performed using mainly Quasi Monte-Carlo integration and adaptations of the programs of Genz, show the domains of validity of each method.
- Published
- 2018
44. How sharp are classical approximations for statistical applications?
- Author
-
Azaïs, Jean-Marc, Mourareau, Stéphane, Institut de Mathématiques de Toulouse UMR5219 (IMT), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Pickands method ,and phrases: Gaussian Process ,[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] ,Euler characteristic method ,Kac-Rice formula ,Gaussian Process - Abstract
This paper aims at comparing theoretical approximations of the tail of the maximum of stochastic processes and the corresponding numerical evaluations. More particularly, we focus on the Pickands or double sum method, the Rice method, the Euler Characteristic method and a new one called the Poisson method. The numerical evaluation, performed using mainly Quasi Monte-Carlo integration and adaptations of the programs of Genz, show the domains of validity of each method.
- Published
- 2018
45. TAP free energy, spin glasses, and variational inference
- Author
-
Song Mei, Zhou Fan, and Andrea Montanari
- Subjects
Statistics and Probability ,Spin glass ,Bayesian inference ,FOS: Physical sciences ,Mathematics - Statistics Theory ,Statistics Theory (math.ST) ,Expected value ,01 natural sciences ,Condensed Matter::Disordered Systems and Neural Networks ,010104 statistics & probability ,symbols.namesake ,FOS: Mathematics ,Statistical physics ,Limit (mathematics) ,0101 mathematics ,Gibbs measure ,Mathematical Physics ,Mathematics ,010102 general mathematics ,Probability (math.PR) ,Mathematical Physics (math-ph) ,Free probability ,Kac–Rice formula ,free probability ,TAP complexity ,Mean field theory ,Sherrington–Kirkpatrick model ,symbols ,Statistics, Probability and Uncertainty ,Constant (mathematics) ,Mathematics - Probability ,Energy (signal processing) ,60F10 - Abstract
We consider the Sherrington–Kirkpatrick model of spin glasses with ferromagnetically biased couplings. For a specific choice of the couplings mean, the resulting Gibbs measure is equivalent to the Bayesian posterior for a high-dimensional estimation problem known as “${\mathbb{Z}}_{2}$ synchronization.” Statistical physics suggests to compute the expectation with respect to this Gibbs measure (the posterior mean in the synchronization problem), by minimizing the so-called Thouless–Anderson–Palmer (TAP) free energy, instead of the mean field (MF) free energy. We prove that this identification is correct, provided the ferromagnetic bias is larger than a constant (i.e., the noise level is small enough in synchronization). Namely, we prove that the scaled $\ell _{2}$ distance between any low energy local minimizers of the TAP free energy and the mean of the Gibbs measure vanishes in the large size limit. Our proof technique is based on upper bounding the expected number of critical points of the TAP free energy using the Kac–Rice formula.
- Published
- 2018
- Full Text
- View/download PDF
46. Central Limit Theorem for the number of real roots of Kostlan Shub Smale random polynomial systems
- Author
-
Armentano, Diego, Azaïs, Jean-Marc, Dalmao, Federico, León, José, Universidad de la República [Montevideo] (UCUR), Institut de Mathématiques de Toulouse UMR5219 (IMT), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Universidad de la República [Montevideo] (UDELAR), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Kostlan-Shub-Smale ramdom polynomials ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,30C15 ,Hermite expansion ,Central limit theorem ,Probability (math.PR) ,FOS: Mathematics ,Kac-Rice formula ,AMS Classification Primary 60F05 ,Mathematics - Probability ,Secondary 60G60 ,65H10 - Abstract
We obtain a Central Limit Theorem for the normalized number of real roots of a square Kostlan-Shub-Smale random polynomial system of any size as the degree goes to infinity. A study of the asymptotic variance of the number of roots is needed, this result was obtained in [2]. Afterwards we represent the number of roots as an explicit non linear functional belonging to the It{\^o}-Wiener chaos. This representation provides a tool for applying the Fourth Moment Theorem and henceforth the asymptotic normality. MSC 2010 subject classifications: Primary 60F05, 30C15, ; secondary 60G60, 65H10.
- Published
- 2018
- Full Text
- View/download PDF
47. Zeros of random functions generated with de Branges kernels
- Author
-
Jan-Fredrik Olsen, Jordi Marzo, Jorge Antezana, and Universitat de Barcelona
- Subjects
Pure mathematics ,Matemáticas ,General Mathematics ,Phase (waves) ,Mathematics::Classical Analysis and ODEs ,02 engineering and technology ,De Branges space ,01 natural sciences ,Point process ,Matemática Pura ,Set (abstract data type) ,purl.org/becyt/ford/1 [https] ,Gaussian analytic functions ,Classical Analysis and ODEs (math.CA) ,FOS: Mathematics ,0202 electrical engineering, electronic engineering, information engineering ,De Branges spaces ,Orthonormal basis ,First intensity function ,Complex Variables (math.CV) ,0101 mathematics ,Kac-rice formula ,Mathematics ,Mathematics::Functional Analysis ,Matemática ,Functional analysis ,Mathematics - Complex Variables ,Mathematics::Complex Variables ,010102 general mathematics ,purl.org/becyt/ford/1.1 [https] ,020207 software engineering ,Random series ,Function (mathematics) ,Mathematics::Spectral Theory ,Intensity function ,Mathematics - Classical Analysis and ODEs ,Anàlisi funcional ,CIENCIAS NATURALES Y EXACTAS - Abstract
We study the point process given by the set of real zeros of random series generated with orthonormal bases of reproducing kernels of de Branges spaces. We find an explicit formula for the intensity function in terms of the phase of the Hermite-Biehler function generating the de Branges space. We prove that the intensity of the point process completely characterizes the underlying de Branges space., Facultad de Ciencias Exactas
- Published
- 2017
48. Testing Gaussian Process with Applications to Super-Resolution
- Author
-
Jean-Marc Azaïs, Yohann De Castro, Stéphane Mourareau, Institut de Mathématiques de Toulouse UMR5219 (IMT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Méthodes numériques pour le problème de Monge-Kantorovich et Applications en sciences sociales (MOKAPLAN), CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Laboratoire de Mathématiques d'Orsay (LMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Analyse et de Mathématiques Appliquées (LAMA), Université Paris-Est Marne-la-Vallée (UPEM)-Fédération de Recherche Bézout-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Université Paris Dauphine-PSL-Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris, Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Fédération de Recherche Bézout-Université Paris-Est Marne-la-Vallée (UPEM), Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), and Institut National des Sciences Appliquées (INSA)-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
- Subjects
FOS: Computer and information sciences ,Super-Resolution ,Computer Science - Information Theory ,Information Theory (cs.IT) ,Probability (math.PR) ,Mathematics - Statistics Theory ,Kac-Rice formula ,Hypothesis Testing ,Statistics Theory (math.ST) ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] ,[INFO.INFO-IT]Computer Science [cs]/Information Theory [cs.IT] ,FOS: Mathematics ,62E15, 62F03, 60G15, 62H10, 62H15 (Primary) 60E05, 60G10, 62J05, 94A08 (secondary) ,Gaussian Process ,Mathematics - Probability ,MSC 2010 subject classifications: Primary 62E15, 62F03, 60G15, 62H10, 62H15 ,secondary 60E05, 60G10, 62J05, 94A08 - Abstract
This article introduces exact testing procedures on the mean of a Gaussian process $X$ derived from the outcomes of $\ell_1$-minimization over the space of complex valued measures. The process $X$ can be thought as the sum of two terms: first, the convolution between some kernel and a target atomic measure (mean of the process); second, a random perturbation by an additive centered Gaussian process. The first testing procedure considered is based on a dense sequence of grids on the index set of~$X$ and we establish that it converges (as the grid step tends to zero) to a randomized testing procedure: the decision of the test depends on the observation $X$ and also on an independent random variable. The second testing procedure is based on the maxima and the Hessian of $X$ in a grid-less manner. We show that both testing procedures can be performed when the variance is unknown (and the correlation function of $X$ is known). These testing procedures can be used for the problem of deconvolution over the space of complex valued measures, and applications in frame of the Super-Resolution theory are presented. As a byproduct, numerical investigations may demonstrate that our grid-less method is more powerful (it~detects sparse alternatives) than tests based on very thin grids., Comment: Final version, 6 figures, Python code and Jupyter notebook available at https://github.com/ydecastro/super-resolution-testing
- Published
- 2017
- Full Text
- View/download PDF
49. Contributions to the study of random submanifolds
- Author
-
Letendre , Thomas, Institut Camille Jordan [Villeurbanne] ( ICJ ), École Centrale de Lyon ( ECL ), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Centre National de la Recherche Scientifique ( CNRS ), Université Lyon 1 - Claude Bernard, Damien Gayet, Université de Lyon, STAR, ABES, Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
volume ,Formule de Kac–Rice ,[ MATH.MATH-GM ] Mathematics [math]/General Mathematics [math.GM] ,polynômes aléatoires ,real projective manifold ,noyau de Bergman ,[MATH.MATH-GM] Mathematics [math]/General Mathematics [math.GM] ,variété projective réelle ,Bergman kernel ,Kac–Rice formula ,Riemannian random waves ,[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM] ,random submanifolds ,Kac--Rice formula ,sous-variétés aléatoires ,ondes riemanniennes aléatoires ,Caractéristique d’Euler ,formule de Kac--Rice ,caractéristique d'Euler ,[ MATH.MATH-MG ] Mathematics [math]/Metric Geometry [math.MG] ,Euler characteristic ,random polynomials - Abstract
We study the volume and Euler characteristic of codimension r ∈ {1, . . . , n} random submanifolds in a dimension n manifold M. First, we consider Riemannian random waves. That is M is a closed Riemannian manifold and we study the common zero set Zλ of r independent random linear combinations of eigenfunctions of the Laplacian associated to eigenvalues smaller than λ 0. We compute estimates for the mean volume and Euler characteristic of Zλ as λ goes to infinity. We also consider a model of random real algebraic manifolds. In this setting, M is the real locus of a projective manifold defined over the reals. Then, we consider the real vanishing locus Zd of a random real global holomorphic section of E ⊗ Ld, where E is a rank r Hermitian vector bundle, L is an ample Hermitian line bundle and both these bundles are defined over the reals. We compute the asymptotics of the mean volume and Euler characteristic of Zd as d goes to infinity. In this real algebraic setting, we also compute the asymptotic of the variance of the volume of Zd, when 1 r < n. In this case, we prove asympotic equidistribution results for Zd in M, Dans cette thèse, nous étudions le volume et la caractéristique d'Euler de sous-variétés aléatoires de codimension r ∈ {1, . . . , n} dans une variété ambiante M de dimension n. Dans un premier modèle, dit des ondes riemanniennes aléatoires, M est une variété riemannienne fermée. Nous considérons alors le lieu Zλ des zéros communs de r combinaisons linéaires aléatoires indépendantes de fonctions propres du laplacien associées à des valeurs propres inférieures à λ 0. Nous obtenons alors les asymptotiques du volume moyen et de la caractéristique d'Euler moyenne de Zλ lorsque λ tend vers l'infini. Dans un second modèle, M est le lieu réel d'une variété projective définie sur les réels. On s'intéresse dans ce cadre au lieu d'annulation réel Zd d'une section holomorphe réelle globale aléatoire de E⊗Ld, où E est un fibré hermitien de rang r, L est un fibré en droites hermitien ample et tous deux sont définis sur les réels. Nous estimons alors les moyennes du volume et de la caractéristique d'Euler de Zd quand d tend vers l'infini. Dans ce modèle algébrique réel, nous calculons aussi l'asymptotique de la variance du volume de Zd pour 1 r < n. Nous en déduisons, dans ce cas, des résultats asymptotiques d'équidistribution de Zd dans M
- Published
- 2016
50. An analogue of Kac-Rice formula for Euler characteristic
- Author
-
Lachièze-Rey, Raphaël, Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145), and Université Paris Descartes - Paris 5 (UPD5)-Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Euler characteristic ,Kac-Rice formula ,shot noise processes ,co-area formula ,Random excursions ,Gaussian fields - Abstract
Given a deterministic function f : R 2 → R satisfying suitable assumptions , we show that for h smooth with compact support, R χ({f u})h(u)du = R 2 γ(x, f, h)dx, where χ({f u}) is the Euler characteristic of the excursion set of f above the level u, and γ(x, f, h) is a bounded function depending on ∇f (x), h(f (x)), h ′ (f (x)) and ∂ ii f (x), i = 1, 2. This formula can be seen as a 2-dimensional analogue of Kac-Rice formula. It yields in particular that the left hand member is continuous in the argument f , for an appropriate norm on the space of C 2 functions. If f is a random field, the expectation can be passed under integrals in this identity under minimal requirements, not involving any density assumptions on the marginals of f or his derivatives. We apply these results to give a weak expression of the mean Euler characteristic of a shot noise process, and the finiteness of its moments.
- Published
- 2016
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.