Back to Search
Start Over
Non universality for the variance of the number of real roots of random trigonometric polynomials
- Source :
- Probability Theory and Related Fields, Probability Theory and Related Fields, Springer Verlag, 2019, 174 (3-4), pp.887-927. ⟨10.1007/s00440-018-0869-2⟩, Probability Theory and Related Fields, 2019, 174 (3-4), pp.887-927. ⟨10.1007/s00440-018-0869-2⟩
- Publication Year :
- 2019
- Publisher :
- HAL CCSD, 2019.
-
Abstract
- In this article, we consider the following family of random trigonometric polynomials $$p_n(t,Y)=\sum _{k=1}^n Y_{k}^1 \cos (kt)+Y_{k}^2\sin (kt)$$ for a given sequence of i.i.d. random variables $$Y^i_{k}$$ , $$i\in \{1,2\}$$ , $$k\ge 1$$ , which are centered and standardized. We set $${\mathcal {N}}([0,\pi ],Y)$$ the number of real roots over $$[0,\pi ]$$ and $${\mathcal {N}}([0,\pi ],G)$$ the corresponding quantity when the coefficients follow a standard Gaussian distribution. We prove under a Doeblin’s condition on the distribution of the coefficients that $$\begin{aligned} \lim _{n\rightarrow \infty }\frac{\text {Var}\left( {\mathcal {N}}_n([0,\pi ],Y)\right) }{n} =\lim _{n\rightarrow \infty }\frac{\text {Var}\left( {\mathcal {N}}_n([0,\pi ],G)\right) }{n} +\frac{1}{30}\left( {\mathbb {E}}\left( \left( Y_{1}^1\right) ^4\right) -3\right) . \end{aligned}$$ The latter establishes that the behavior of the variance is not universal and depends on the distribution of the underlying coefficients through their kurtosis. Actually, a more general result is proven in this article, which does not require that the coefficients are identically distributed. The proof mixes a recent result regarding Edgeworth expansions for distribution norms established in Bally et al. (Electron J Probab 23(45):1–51, 2018) with the celebrated Kac–Rice formula.
- Subjects :
- Statistics and Probability
Random trigonometric polynomial
Kac-Rice formula
01 natural sciences
Combinatorics
010104 statistics & probability
60G50, 60F05
FOS: Mathematics
Random trigonometric polynomials
0101 mathematics
Mathematics
Small ball estimate
Real roots
010102 general mathematics
Probability (math.PR)
Kac–Rice formula
Settore MAT/06 - Probabilita' e Statistica Matematica
Universality (dynamical systems)
[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]
Edgeworth expansion for non smooth functions
Small balls estimates
Statistics, Probability and Uncertainty
Trigonometry
[ MATH.MATH-PR ] Mathematics [math]/Probability [math.PR]
Random variable
Analysis
Mathematics - Probability
Subjects
Details
- Language :
- English
- ISSN :
- 01788051 and 14322064
- Database :
- OpenAIRE
- Journal :
- Probability Theory and Related Fields, Probability Theory and Related Fields, Springer Verlag, 2019, 174 (3-4), pp.887-927. ⟨10.1007/s00440-018-0869-2⟩, Probability Theory and Related Fields, 2019, 174 (3-4), pp.887-927. ⟨10.1007/s00440-018-0869-2⟩
- Accession number :
- edsair.doi.dedup.....5b5c6a0e6fef1a5d9af5f62c4008f5d2