1. Prediction of summer precipitation via machine learning with key climate variables:A case study in Xinjiang, China
- Author
-
Chenzhi Ma, Junqiang Yao, Yinxue Mo, Guixiang Zhou, Yan Xu, and Xuemin He
- Subjects
Xinjiang ,Summer Precipitation Prediction ,Machine Learning ,SHAP ,Precipitation Anomalies ,Physical geography ,GB3-5030 ,Geology ,QE1-996.5 - Abstract
Study region: Xinjiang is located in the mid-latitude region of Eurasia in northwestern China. Precipitation is predominantly concentrated in northern Xinjiang, while southern Xinjiang remains comparatively arid. Summer precipitation accounts for 54.4 % of the annual total. Study focus: This study aims to develop a machine learning model to predict summer precipitation (June–August) in XJ and explore the key variables contributing to summer precipitation in this region. The SHapley Additive exPlanations method was integrated with an extreme tree model to quantify the contributions of variables towards precipitation. Artificial neural networks, support vector machines, and extreme gradient boosting were considered to predict summer precipitation. To train the ML model, we used precipitation data from 1961 to 2012, whilst the forecast results from 2013 to 2017 were used for validation. New hydrological insights for the regions: The results demonstrated that the ANN model achieved robust performance during both the training and validation periods. For Northern and Southern XJ, the Mean Absolute Error and Root Mean Square Error of the ANN model were 15.34 (20.40) and 23.21 (30.01), respectively. The SHAP analysis showed that in the context of Northern Xinjiang, the Niño B Sea Surface Temperature Anomaly, Western Pacific Subtropical High Intensity, Pacific Subtropical High Intensity, and Multivariate ENSO Index play crucial roles in the prediction of summer precipitation. In Southern Xinjiang, the South China Sea Subtropical High Intensity, South China Sea Subtropical High Area, Western Pacific Warm Pool Strength, and Atlantic multidecadal oscillation have emerged as key variables affecting summer precipitation forecasting.
- Published
- 2024
- Full Text
- View/download PDF