Kerry Gallagher, Alice Recanati, Maurice Pagel, Eric Douville, Laurent Tassan-Got, Yves Missenard, Andrew Carter, Cécile Gautheron, Louise Bordier, Rosella Pinna-Jamme, Jocelyn Barbarand, Géosciences Paris Sud (GEOPS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Nucléaire d'Orsay (IPNO), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Birkbeck College [University of London], Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Géochrononologie Traceurs Archéométrie (GEOTRAC), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Géochimie Des Impacts (GEDI), Géosciences Rennes (GR), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 1 (UR1), and Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)
International audience; Apatite (U-Th-Sm)/He (AHe) thermochronometry is widely used to constrain thermal histories and rates of tectonic, exhumation, and erosion processes. However, data interpretation is often challenging, especially when the thermal history includes extended residence time in the He partial retention zone (HePRZ), with highly dispersed dates revealing the complexity of diffusion processes in natural systems. This study investigates chemical and physical factors that may have impacted He diffusion in apatite over long timescales in a context of protracted residence in the HePRZ. Nine samples from the Ploumanac'h pluton and North Tregor (Armorican Massif, France) were collected in granitoids, differing in petrography and chemisty. This area was chosen because these samples underwent a similar thermal history since ~ 300 Ma. We report new (U-Th-Sm)/He dates, along with apatite fission-track (AFT) data, as well as lithological and chemical characterization. The results show dispersed (U-Th-Sm)/He dates, ranging from 87 ± 7 to 291 ± 23 Ma, whereas central AFT dates vary from 142 ± 6 to 199 ± 9 Ma. Current predictive models for He diffusion and fission-track annealing in apatite could not reproduce the two datasets together. However, this apparent discrepancy gives insight into the parameters influencing He diffusion at geological timescales. The data confirm that radiation damage enhances He trapping, as the AHe dates are positively correlated to effective uranium (eU) concentration. The He age dispersion for constant eU content cannot be explained just by variations in grain size or chemical composition. To explore the potential influence of recoil damage trapping behavior and annealing kinetics on AHe dates, we tested a new diffusion model from Gerin et al. (2017). Given the expected model of the thermal history provided by AFT inversion, we investigated the influence of the trapping energy on AHe dates. The AHe date variations can be explained only if the trapping energy evolves from one crystal to another, increasing with the amount of damage. For a given trapping energy, minor variations in the recoil-damage annealing rate can consistently explain most of the remaining dispersion of the AHe dates.