20 results on '"Joël Gaffé"'
Search Results
2. Evolution of Bacterial Persistence to Antibiotics during a 50,000-Generation Experiment in an Antibiotic-Free Environment
- Author
-
Hugo Mathé-Hubert, Rafika Amia, Mikaël Martin, Joël Gaffé, and Dominique Schneider
- Subjects
antibiotic persistence ,evolution ,Escherichia coli ,beta-lactam ,ampicillin ,fluoroquinolones ,Therapeutics. Pharmacology ,RM1-950 - Abstract
Failure of antibiotic therapies causes > 700,000 deaths yearly and involves both bacterial resistance and persistence. Persistence results in the relapse of infections by producing a tiny fraction of pathogen survivors that stay dormant during antibiotic exposure. From an evolutionary perspective, persistence is either a ‘bet-hedging strategy’ that helps to cope with stochastically changing environments or an unavoidable minimal rate of ‘cellular errors’ that lock the cells in a low activity state. Here, we analyzed the evolution of persistence over 50,000 bacterial generations in a stable environment by improving a published method that estimates the number of persister cells based on the growth of the reviving population. Our results challenged our understanding of the factors underlying persistence evolution. In one case, we observed a substantial decrease in persistence proportion, suggesting that the naturally observed persistence level is not an unavoidable minimal rate of ‘cellular errors’. However, although there was no obvious environmental stochasticity, in 11 of the 12 investigated populations, the persistence level was maintained during 50,000 bacterial generations.
- Published
- 2022
- Full Text
- View/download PDF
3. Large Chromosomal Rearrangements during a Long-Term Evolution Experiment with Escherichia coli
- Author
-
Colin Raeside, Joël Gaffé, Daniel E. Deatherage, Olivier Tenaillon, Adam M. Briska, Ryan N. Ptashkin, Stéphane Cruveiller, Claudine Médigue, Richard E. Lenski, Jeffrey E. Barrick, and Dominique Schneider
- Subjects
Microbiology ,QR1-502 - Abstract
ABSTRACT Large-scale rearrangements may be important in evolution because they can alter chromosome organization and gene expression in ways not possible through point mutations. In a long-term evolution experiment, twelve Escherichia coli populations have been propagated in a glucose-limited environment for over 25 years. We used whole-genome mapping (optical mapping) combined with genome sequencing and PCR analysis to identify the large-scale chromosomal rearrangements in clones from each population after 40,000 generations. A total of 110 rearrangement events were detected, including 82 deletions, 19 inversions, and 9 duplications, with lineages having between 5 and 20 events. In three populations, successive rearrangements impacted particular regions. In five populations, rearrangements affected over a third of the chromosome. Most rearrangements involved recombination between insertion sequence (IS) elements, illustrating their importance in mediating genome plasticity. Two lines of evidence suggest that at least some of these rearrangements conferred higher fitness. First, parallel changes were observed across the independent populations, with ~65% of the rearrangements affecting the same loci in at least two populations. For example, the ribose-utilization operon and the manB-cpsG region were deleted in 12 and 10 populations, respectively, suggesting positive selection, and this inference was previously confirmed for the former case. Second, optical maps from clones sampled over time from one population showed that most rearrangements occurred early in the experiment, when fitness was increasing most rapidly. However, some rearrangements likely occur at high frequency and may have simply hitchhiked to fixation. In any case, large-scale rearrangements clearly influenced genomic evolution in these populations. IMPORTANCE Bacterial chromosomes are dynamic structures shaped by long histories of evolution. Among genomic changes, large-scale DNA rearrangements can have important effects on the presence, order, and expression of genes. Whole-genome sequencing that relies on short DNA reads cannot identify all large-scale rearrangements. Therefore, deciphering changes in the overall organization of genomes requires alternative methods, such as optical mapping. We analyzed the longest-running microbial evolution experiment (more than 25 years of evolution in the laboratory) by optical mapping, genome sequencing, and PCR analyses. We found multiple large genome rearrangements in all 12 independently evolving populations. In most cases, it is unclear whether these changes were beneficial themselves or, alternatively, hitchhiked to fixation with other beneficial mutations. In any case, many genome rearrangements accumulated over decades of evolution, providing these populations with genetic plasticity reminiscent of that observed in some pathogenic bacteria.
- Published
- 2014
- Full Text
- View/download PDF
4. Insertion-sequence-mediated mutations both promote and constrain evolvability during a long-term experiment with bacteria
- Author
-
Olivier Tenaillon, Richard E. Lenski, Dominique Schneider, Thomas Hindré, Jeffrey E. Barrick, Joël Gaffé, and Jessika Consuegra
- Subjects
0106 biological sciences ,0301 basic medicine ,Mutation rate ,Science ,Population ,Genetic Fitness ,General Physics and Astronomy ,Biology ,010603 evolutionary biology ,01 natural sciences ,Article ,Mobile elements ,General Biochemistry, Genetics and Molecular Biology ,Bacterial evolution ,Evolution, Molecular ,03 medical and health sciences ,Mutation Rate ,Escherichia coli ,Selection, Genetic ,Insertion sequence ,education ,Bacterial genomics ,Genetics ,education.field_of_study ,Multidisciplinary ,Natural selection ,Bacteria ,Escherichia coli Proteins ,General Chemistry ,Adaptation, Physiological ,Evolvability ,Mutagenesis, Insertional ,Phenotype ,030104 developmental biology ,Experimental evolution ,DNA Transposable Elements ,Adaptation ,Mobile genetic elements ,Genome, Bacterial - Abstract
Insertion sequences (IS) are ubiquitous bacterial mobile genetic elements, and the mutations they cause can be deleterious, neutral, or beneficial. The long-term dynamics of IS elements and their effects on bacteria are poorly understood, including whether they are primarily genomic parasites or important drivers of adaptation by natural selection. Here, we investigate the dynamics of IS elements and their contribution to genomic evolution and fitness during a long-term experiment with Escherichia coli. IS elements account for ~35% of the mutations that reached high frequency through 50,000 generations in those populations that retained the ancestral point-mutation rate. In mutator populations, IS-mediated mutations are only half as frequent in absolute numbers. In one population, an exceptionally high ~8-fold increase in IS150 copy number is associated with the beneficial effects of early insertion mutations; however, this expansion later slowed down owing to reduced IS150 activity. This population also achieves the lowest fitness, suggesting that some avenues for further adaptation are precluded by the IS150-mediated mutations. More generally, across all populations, we find that higher IS activity becomes detrimental to adaptation over evolutionary time. Therefore, IS-mediated mutations can both promote and constrain evolvability., Insertion sequences (IS) are common mobile genetic elements in bacteria, but their effects on bacterial evolution are not well understood. Here, Consuegra and colleagues investigate the dynamics and fitness consequences of IS elements in E. coli over 50,000 generations.
- Published
- 2021
5. Genetic Basis of Exploiting Ecological Opportunity During the Long-Term Diversification of a Bacterial Population
- Author
-
Dominique Schneider, Thomas Hindré, Jessica Plucain, Jessika Consuegra, Joël Gaffé, Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble - UMR 5525 (TIMC-IMAG), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire Adaptation et pathogénie des micro-organismes [Grenoble] (LAPM), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), GEM, and Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)
- Subjects
0301 basic medicine ,Lineage (genetic) ,Population ,Adaptation, Biological ,Biology ,03 medical and health sciences ,Genetics ,Escherichia coli ,Pyrophosphatases ,education ,Molecular Biology ,Ecology, Evolution, Behavior and Systematics ,ComputingMilieux_MISCELLANEOUS ,Acetic Acid ,Ecological niche ,education.field_of_study ,Experimental evolution ,Polymorphism, Genetic ,Mechanism (biology) ,Ecology ,[SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE] ,Escherichia coli Proteins ,Phenotypic trait ,Biological Evolution ,DNA-Binding Proteins ,Repressor Proteins ,030104 developmental biology ,Phenotype ,Mutation (genetic algorithm) ,Mutation ,Epistasis ,Bacterial Outer Membrane Proteins - Abstract
Adaptive diversification is an essential evolutionary process, one that produces phenotypic innovations including the colonization of available ecological niches. Bacteria can diverge in sympatry when ecological opportunities allow, but the underlying genetic mechanisms are often unknown. Perhaps, the longest-lasting adaptive diversification seen in the laboratory occurred during the long-term evolution experiment, in which 12 populations of Escherichia coli have been evolving independently for more than 65,000 generations from a common ancestor. In one population, two lineages, S and L, emerged at ~6500 generations and have dynamically coexisted ever since by negative frequency-dependent interactions mediated, in part, by acetate secretion by L. Mutations in spoT, arcA, and gntR promoted the emergence of the S lineage, although they reproduced only partially its phenotypic traits. Here, we characterize the evolved mechanism of acetate consumption by the S lineage that enabled invasion and coexistence with the L lineage. We identified an additional mutation in acs that, together with the arcA mutation, drove an early restructuring of the transcriptional control of central metabolism in S, leading to improved acetate consumption. Pervasive epistatic interactions within the S genome contributed to the exploitation of this new ecological opportunity. The emergence and maintenance of this long-term polymorphism is a complex multi-step process.
- Published
- 2017
- Full Text
- View/download PDF
6. Insertion Sequence-Driven Evolution of Escherichia coli in Chemostats
- Author
-
Christopher McKenzie, Dominique Schneider, Thomas Ferenci, Evelyne Coursange, Joël Gaffé, Ram P. Maharjan, Laboratoire Adaptation et pathogénie des micro-organismes [Grenoble] (LAPM), and Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)
- Subjects
Mutation rate ,MESH: Mutation ,MESH: Gene Rearrangement ,Cell Culture Techniques ,Bacterial genome size ,Biology ,MESH: Genome, Bacterial ,medicine.disease_cause ,Genome ,Evolution, Molecular ,03 medical and health sciences ,Phylogenetics ,Genetic variation ,Escherichia coli ,Genetics ,medicine ,MESH: Genetic Variation ,Insertion sequence ,MESH: Phylogeny ,Molecular Biology ,MESH: Evolution, Molecular ,Phylogeny ,Ecology, Evolution, Behavior and Systematics ,030304 developmental biology ,Gene Rearrangement ,MESH: Cell Culture Techniques ,0303 health sciences ,Mutation ,MESH: Escherichia coli ,030306 microbiology ,[SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE] ,Genetic Variation ,Gene rearrangement ,MESH: DNA Transposable Elements ,Genes, Bacterial ,DNA Transposable Elements ,MESH: Genes, Bacterial ,Genome, Bacterial - Abstract
International audience; Insertion sequence (IS) elements are present in almost all bacterial genomes and are mobile enough to provide genomic tools to differentiate closely related isolates. They can be used to estimate genetic diversity and identify fitness-enhancing mutations during evolution experiments. Here, we determined the genomic distribution of eight IS elements in 120 genomes sampled from Escherichia coli populations that evolved in glucose- and phosphate-limited chemostats by comparison to the ancestral pattern. No significant differential transposition of the various IS types was detected across the environments. The phylogenies revealed substantial diversity amongst clones sampled from each chemostat, consistent with the phenotypic diversity within populations. Two IS-related changes were common to independent chemostats, suggesting parallel evolution. One of them corresponded to insertions of IS1 elements within rpoS encoding the master regulator of stress conditions. The other parallel event was an IS5-dependent deletion including mutY involved in DNA repair, thereby providing the molecular mechanism of generation of mutator clones in these evolving populations. These deletions occurred in different co-existing genotypes within single populations and were of various sizes. Moreover, differential locations of IS elements combined with their transpositional activity provided evolved clones with different phenotypic landscapes. Therefore, IS elements strongly influenced the evolutionary processes in continuous E. coli cultures by providing a way to modify both the global regulatory network and the mutation rates of evolving cells.
- Published
- 2011
- Full Text
- View/download PDF
7. Identification of three tomato flower and fruit MADS-box proteins with a putative histone deacetylase binding domain
- Author
-
Marcel Kuntz, Joël Gaffé, Claudie Lemercier, Jean-Pierre Alcaraz, Laboratoire Adaptation et pathogénie des micro-organismes [Grenoble] (LAPM), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Biochimie et biophysique des systèmes intégrés (BBSI), Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Joseph Fourier - Grenoble 1 (UJF), Plastes et Différenciation Cellulaire (PDC), Laboratoire de physiologie cellulaire végétale (LPCV), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Recherche Agronomique (INRA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier - Grenoble 1 (UJF)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)
- Subjects
0106 biological sciences ,MESH: Introns ,MESH: Sequence Homology, Amino Acid ,Sequence Homology ,MESH: Amino Acid Sequence ,MESH: Base Sequence ,MESH: RNA, Plant ,01 natural sciences ,Solanum lycopersicum ,Genes, Reporter ,MESH: Lycopersicon esculentum ,MESH: Genes, Plant ,MADS-box ,Plant Proteins ,Genetics ,0303 health sciences ,Histone deacetylase 5 ,MESH: Plant Proteins ,Histone deacetylase 2 ,Exons ,General Medicine ,Cell biology ,DNA-Binding Proteins ,Amino Acid ,RNA, Plant ,Histone deacetylase binding ,MESH: DNA Primers ,DNA, Plant ,Molecular Sequence Data ,MESH: Sequence Alignment ,MADS Domain Proteins ,Flowers ,Biology ,Genes, Plant ,Histone Deacetylases ,MESH: MADS Domain Proteins ,03 medical and health sciences ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Amino Acid Sequence ,Lycopersicon esculentum ,MESH: DNA, Plant ,Reporter ,Transcription factor ,DNA Primers ,030304 developmental biology ,Binding Sites ,MESH: Molecular Sequence Data ,Sequence Homology, Amino Acid ,Base Sequence ,HDAC11 ,HDAC10 ,MESH: Genes, Reporter ,DNA ,Plant ,MESH: Flowers ,HDAC4 ,Introns ,MESH: Histone Deacetylases ,Genes ,MESH: Binding Sites ,RNA ,MESH: Exons ,Sequence Alignment ,MESH: DNA-Binding Proteins ,010606 plant biology & botany - Abstract
International audience; MADS-box transcription factors play crucial roles in organ and cell differentiation in organisms ranging from yeast to humans. Most of the work on plant MADS-box proteins focused on their roles in floral development whereas less information is available on their function in fruit maturation. We cloned three distinct tomato cDNAs using a RT-PCR approach, encoding LeMADS1, LeMADS5 and LeMADS6 factors and whose mRNAs mostly accumulate in tomato flowers and fruits. Phylogeny analysis indicates that LeMADS1, 5 and 6 belong to the MEF2-like family. When transiently expressed in tobacco leaves or in human cells, LeMADS1, 5 and 6 are targeted to the cell nucleus. As the endogenous target genes of these putative transcription factors are unknown, the transcriptional activity of these proteins was characterized in a heterologous system and we showed that, when fused to a Gal4-DNA-binding domain, they repress the transcription of heterologous reporter genes. Since histone deacetylases control MEF2 transcriptional activity and since a putative histone deacetylase binding site was present in LeMADS1, 5 and 6, we tested the potential interaction between these factors and HDAC5 deacetylase. Surprisingly, in this heterologous system, LeMADS1, 5 and 6 interacted with HDAC5 N-terminal region. Our data suggest that, like mammalian MEF2A, plant MADS-box transcriptional activity might be regulated by enzymes controlling chromatin acetylation.
- Published
- 2011
- Full Text
- View/download PDF
8. Parallel Genetic and Phenotypic Evolution of DNA Superhelicity in Experimental Populations of Escherichia coli
- Author
-
Margaret A. Riley, Dominique Schneider, Peter Fischer Hallin, Estelle Crozat, Richard E. Lenski, Joël Gaffé, Cynthia L. Winkworth, Laboratoire Adaptation et pathogénie des micro-organismes [Grenoble] (LAPM), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Department of Biology, University of Massachusetts System (UMASS), Center for Biological Sequence Analysis [Lyngby], Technical University of Denmark [Lyngby] (DTU), Department of Microbiology and Molecular Genetics, Michigan State University [East Lansing], and Michigan State University System-Michigan State University System
- Subjects
Population ,Locus (genetics) ,Biology ,Evolution, Molecular ,03 medical and health sciences ,chemistry.chemical_compound ,Molecular evolution ,Models of DNA evolution ,Escherichia coli ,Genetics ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Allele ,education ,Molecular Biology ,Gene ,Ecology, Evolution, Behavior and Systematics ,030304 developmental biology ,0303 health sciences ,education.field_of_study ,DNA, Superhelical ,030306 microbiology ,Phenotype ,chemistry ,DNA supercoil ,DNA - Abstract
International audience; DNA supercoiling is the master function that interconnects chromosome structure and global gene transcription. This function has recently been shown to be under strong selection in Escherichia coli. During the evolution of 12 initially identical populations propagated in a defined environment for 20,000 generations, parallel increases in DNA supercoiling were observed in 10 populations. The genetic changes associated with the increased supercoiling were examined in one population, and beneficial mutations in the genes topA (encoding topoisomerase I) and fis (encoding a histone-like protein) were identified. To elucidate the molecular basis and impact of these changes, we quantified the level of genetic, phenotypic, and molecular parallelism linked to DNA supercoiling in all 12 evolving populations. First, sequence determination of DNA topology-related loci revealed strong genetic parallelism, with mutations concentrated in 3 genes (topA, fis and dusB), although the populations had different alleles at each locus. Statistical analyses of these polymorphisms implied the action of positive selection and, moreover, suggested that fis and dusB, which belong to the same operon, have related functions. Indeed, we demonstrated that DusB regulates the expression of fis by both experimental and phylogenetic analyses. Second, molecular analyses of five mutations in fis and dusB affecting the transcription, translation and protein activity of Fis also revealed strong parallelism in the resulting phenotypic effects. Third, artificially increasing DNA supercoiling in one of the two populations that lacked DNA topology changes led to a significant fitness increase. The high levels of molecular and genetic parallelism, targeting a small subset of the many genes involved in DNA supercoiling, indicate that changes in DNA superhelicity have been important in the evolution of these populations. Surprisingly, however, most of the evolved alleles we tested had either no detectable or slightly deleterious effects on fitness, despite these signatures of positive selection.
- Published
- 2010
- Full Text
- View/download PDF
9. Plant lipid-associated fibrillin proteins condition jasmonate production under photosynthetic stress
- Author
-
Abir Youssef, Joël Gaffé, Yec’han Laizet, Maryse A. Block, Dominique Pontier, Jean-Pierre Alcaraz, Eric Maréchal, Tony R. Larson, Marcel Kuntz, Plastes et Différenciation Cellulaire (PDC), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physiologie cellulaire végétale (LPCV), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Recherche Agronomique (INRA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), CNAP, Department of Biology, University of York [York, UK], Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Recherche Agronomique (INRA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
0106 biological sciences ,plastoglobule ,Photoinhibition ,Arabidopsis thaliana ,Plastoglobule ,thylakoid ,Arabidopsis ,plant ,Plant Science ,01 natural sciences ,Anthocyanins ,chemistry.chemical_compound ,Jasmonate ,Photosynthesis ,plastid ,0303 health sciences ,Jasmonic acid ,Microfilament Proteins ,food and beverages ,Chloroplast ,Biochemistry ,Thylakoid ,RNA Interference ,jasmonic acid biosynthesis ,triacylglycerol ,photooxidative stress ,fibrillin ,Cyclopentanes ,Biology ,lipid associated protein ,Fibrillins ,03 medical and health sciences ,chloroplast ,Microscopy, Electron, Transmission ,Stress, Physiological ,Genetics ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Oxylipins ,Plastid ,030304 developmental biology ,Arabidopsis Proteins ,fungi ,photosystem II ,Photosystem II Protein Complex ,Cell Biology ,biology.organism_classification ,chemistry ,photosynthesis acclimation ,010606 plant biology & botany - Abstract
International audience; Summary The role of a subfamily of lipid globule-associated proteins, referred to as plant fibrillins (FIB1a, -1b, -2), was determined using a RNA interference (RNAi) strategy. We show that Arabidopsis plants with reduced levels of these plastid structural proteins are impaired in long-term acclimation to environmental constraint, namely photooxidative stress imposed by high light combined with cold. As a result, their photosynthetic apparatus is inefficiently protected. This leads to the prevalence of an abnormal granal and stromal membrane arrangement, as well as higher photosystem II photoinhibition under stress. The visible phenotype of FIB1-2 RNAi lines also includes retarded shoot growth and a deficit in anthocyanin accumulation under stress. All examined phenotypic effects of lower FIB levels are abolished by jasmonate (JA) treatment. An atypical expression pattern of several JA-induced genes was observed in RNAi plants. A JA-deficient mutant was found to share similar stress phenotypic characteristics with FIB RNAi plants. We conclude a new physiological role for JA, namely acclimation of chloroplasts, and that light/cold stress-related JA biosynthesis is conditioned by the accumulation of plastoglobule-associated FIB1-2 proteins. Consistent correlative data suggest that this FIB effect is mediated by plastoglobule (and triacylglycerol) accumulation as the potential site for initiating the chloroplast stress-related JA biosynthesis.
- Published
- 2010
- Full Text
- View/download PDF
10. Fibrillin influence on plastid ultrastructure and pigment content in tomato fruit
- Author
-
Joël Gaffé, Paul D. Fraser, Andrew J. Simkin, Peter M. Bramley, Jean-Pierre Carde, Marcel Kuntz, Jean-Pierre Alcaraz, Laboratoire Adaptation et pathogénie des micro-organismes [Grenoble] (LAPM), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Gestes Medico-chirurgicaux Assistés par Ordinateur (TIMC-IMAG-GMCAO), Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble - UMR 5525 (TIMC-IMAG), VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Plastes et différenciation cellulaire (PDC), European commission Agriculture and Fisheries program for the mobility of researchers (Contract No. FAIR-98-5002), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-IMAG-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-IMAG-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Laboratoire de physiologie cellulaire végétale (LPCV), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Recherche Agronomique (INRA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0106 biological sciences ,Plastoglobule ,macromolecular substances ,Plant Science ,MESH: Capsicum ,Horticulture ,Biology ,Fibrillins ,Thylakoids ,Chloroplast ,01 natural sciences ,Biochemistry ,MESH: Microfilament Proteins ,03 medical and health sciences ,MESH: Thylakoids ,Solanum lycopersicum ,Membrane pore ,MESH: Lycopersicon esculentum ,Chromoplast ,Plastids ,Lycopersicon esculentum ,Thylakoid integrity ,Plastid ,Molecular Biology ,Carotenoid ,030304 developmental biology ,chemistry.chemical_classification ,0303 health sciences ,[SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE] ,Microfilament Proteins ,food and beverages ,Ripening ,MESH: Plastids ,General Medicine ,Plants, Genetically Modified ,Fruit ripening ,Carotenoids ,MESH: Plants, Genetically Modified ,chemistry ,Fruit ,Thylakoid ,MESH: Carotenoids ,Capsicum ,MESH: Fruit ,Fibrillin ,010606 plant biology & botany - Abstract
International audience; The protein termed fibrillin is involved in the formation of lipoprotein structures, such as plastoglobules and fibrils in certain chromoplast types, which have been implicated in the over-production of pigments due to a sink effect. In order to examine its effect in differentiating chromoplasts of a non-fibrillar type, the pepper fibrillin gene was expressed in tomato fruit. Both the transcript and protein were found to accumulate during tomato fruit ripening from an early mature green stage. However, formation of carotenoid deposition structures in tomato chromoplasts, such as fibrils, was not observed. Nevertheless, a two-fold increase in carotenoid content and associated carotenoid derived flavour volatiles (6-methyl-5-hepten-2-one, geranylacetone, beta-ionone and beta-cyclocitral) was observed. An unexpected phenotypic observation in the transgenic fruit was the delayed loss of thylakoids in differentiating chromoplasts, leading to the transient formation of plastids exhibiting a typical chromoplastic zone adjacent to a protected chloroplastic zone with preserved thylakoids. An in vitro assay has been developed to monitor fibrillin activity on thylakoids: data were obtained suggesting a membrane protection role for fibrillin, more specifically against moderate uncoupling effects.
- Published
- 2007
- Full Text
- View/download PDF
11. Analysis of the Pectin Methylesterase Activity in a Segregating Population of a Tobacco Transgenic Plant using Callus Tissue
- Author
-
Martín-Ernesto Tiznado-Hernández and Joël Gaffé
- Subjects
0106 biological sciences ,food.ingredient ,Pectin ,Transgene ,Population ,Horticulture ,Biology ,01 natural sciences ,Isozyme ,03 medical and health sciences ,food ,education ,030304 developmental biology ,0303 health sciences ,education.field_of_study ,fungi ,food and beverages ,Plant physiology ,musculoskeletal system ,Molecular biology ,Pectinesterase ,body regions ,surgical procedures, operative ,Biochemistry ,Cell culture ,Callus ,010606 plant biology & botany - Abstract
With the aim to develop a callus-based tool to study the activity of transgenes, we induced callus from a segregating population of a tobacco transgenic plant expressing a single copy of a transgene designed to overexpress a pectin methylesterase isoenzyme (pmeu1). Pectin methylesterase (PME) activity in the whole plant showed 4-fold induction whereas in callus tissue we found up to 20-fold induction. Furthermore, determination of PME activity of 38 segregating transgenic calluses showed the presence of four groups: calluses with activity like control (calluses-c), calluses with 5-fold induction (calluses-5); calluses with 10-fold induction (calluses-10) and calluses with 20-fold induction (calluses-20) of PME activity. Based on the expected Mendelian segregation of azygous:hemizygous:homozygous, we placed calluses-c, calluses-10 and calluses-20 as azygous, hemizygous and homozygous, respectively. This is a behavior that can be explained by the gene-dosage phenomena. Chi-square statistics was used to test whether the calluses-5 are azygous (χ2= 4.24) or either homozygous or heterozygous (χ2= 0.034). The Chi-square critical value is χ2 (α=0.05, 1 df)= 3.84 which allowed to conclude that calluses-5 are either homozygous or heterozygous. Next, we tested whether calluses-5 are either hemizygous (χ2= 6.36) or homozygous (χ2= 0.314). The critical value of χ2 (α=0.05, 2 df)= 5.99 was highly significant for concluding that calluses-5 are homozygous for the transgene. This is a behavior that can be explained by the co-silencing phenomena. It is concluded that the use of callus tissue can allowed to find changes in expression of transgenes that are difficult to observe in the whole plant.
- Published
- 2004
- Full Text
- View/download PDF
12. A Plastid Terminal Oxidase Associated with Carotenoid Desaturation during Chromoplast Differentiation
- Author
-
Eve-Marie Josse, Pierre Carol, Joël Gaffé, Andrew J. Simkin, Marcel Kuntz, and Anne-Marie Labouré
- Subjects
Phytoene desaturase ,Alternative oxidase ,Oxidase test ,Physiology ,fungi ,food and beverages ,Plant Science ,Chlororespiration ,Biology ,Plastid terminal oxidase ,chemistry.chemical_compound ,Phytoene ,chemistry ,Biochemistry ,Chromoplast ,Genetics ,Plastid - Abstract
The Arabidopsis IMMUTANS gene encodes a plastid homolog of the mitochondrial alternative oxidase, which is associated with phytoene desaturation. Upon expression in Escherichia coli, this protein confers a detectable cyanide-resistant electron transport to isolated membranes. In this assay this activity is sensitive to n-propyl-gallate, an inhibitor of the alternative oxidase. This protein appears to be a plastid terminal oxidase (PTOX) that is functionally equivalent to a quinol:oxygen oxidoreductase. This protein was immunodetected in achlorophyllous pepper (Capsicum annuum) chromoplast membranes, and a corresponding cDNA was cloned from pepper and tomato (Lycopersicum esculentum) fruits. Genomic analysis suggests the presence of a single gene in these organisms, the expression of which parallels phytoene desaturase and ζ-carotene desaturase gene expression during fruit ripening. Furthermore, thisPTOX gene is impaired in the tomato ghostmutant, which accumulates phytoene in leaves and fruits. These data show that PTOX also participates in carotenoid desaturation in chromoplasts in addition to its role during early chloroplast development.
- Published
- 2000
- Full Text
- View/download PDF
13. A case of adaptation through a mutation in a tandem duplication during experimental evolution in Escherichia coli
- Author
-
Thomas Ferenci, Martin Schliep, Dominique Schneider, Jessica Plucain, Lei Wang, Lu Feng, Joël Gaffé, Ram P. Maharjan, Olivier Tenaillon, School of Molecular Bioscience, The University of Sydney, Laboratoire Adaptation et pathogénie des micro-organismes [Grenoble] (LAPM), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), TEDA School of Biological Sciences and Biotechnology, Nankai University (NKU), Key Laboratory of Molecular Microbiology and Technology, ministry of education, Ecologie et Evolution des Microorganismes (EEM), Université Paris Diderot - Paris 7 (UPD7)-Université Paris 13 (UP13)-Université Sorbonne Paris Cité (USPC)-Institut National de la Santé et de la Recherche Médicale (INSERM), This work was also supported by the National Basic Research Program of China (973 Program) [2009CB522603] and the National Natural Science Foundation of China (NSFC) Key Program [31030002] (to LW and LF), the Agence Nationale de la Recherche (ANR) Program 'Blanc' (ANR-08-BLAN-0283-01, to DS), Centre National de la Recherche Scientifique, and Université Joseph Fourier (to DS), and the Agence Nationale de la Recherche (ANR) Program 'Génomique' (ANR-08-GENM-023, to DS and OT)., BMC, Ed., Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), and Université Paris 13 (UP13)-Université Paris Diderot - Paris 7 (UPD7)-Université Sorbonne Paris Cité (USPC)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
Heterozygote ,Lineage (genetic) ,Duplication ,Biology ,medicine.disease_cause ,Genome ,03 medical and health sciences ,Chemostats ,Frequency-dependent selection ,[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Genomics [q-bio.GN] ,Chromosome Duplication ,Gene duplication ,Genetics ,medicine ,Escherichia coli ,Indirect selection ,Heterozygous duplication ,Gene ,030304 developmental biology ,Gene Rearrangement ,2. Zero hunger ,0303 health sciences ,Mutation ,Experimental evolution ,Ecology ,030306 microbiology ,Insertion sequence elements ,Gene rearrangement ,Adaptation, Physiological ,Clone Cells ,3. Good health ,Phenotype ,[SDV.BBM.GTP] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Genomics [q-bio.GN] ,Tandem exon duplication ,Chromosome Deletion ,Directed Molecular Evolution ,Sequence Analysis ,Polymorphism, Restriction Fragment Length ,Research Article ,Biotechnology - Abstract
Background DNA duplications constitute important precursors for genome variation. Here we analyzed an unequal duplication harboring a beneficial mutation that may provide alternative evolutionary outcomes. Results We characterized this evolutionary event during experimental evolution for only 100 generations of an Escherichia coli strain under glucose limitation within chemostats. By combining Insertion Sequence based Restriction Length Polymorphism experiments, pulsed field gel electrophoresis and two independent genome re-sequencing experiments, we identified an evolved lineage carrying a 180 kb duplication of the 46’ region of the E. coli chromosome. This evolved duplication revealed a heterozygous state, with one copy harboring a 2668 bp deletion that included part of the ogrK gene and both the yegR and yegS genes. By genetically manipulating ancestral and evolved strains, we showed that the single yegS inactivation was sufficient to confer a frequency dependent fitness increase under the chemostat selective conditions in both the ancestor and evolved genetic contexts, implying that the duplication itself was not a direct fitness contributor. Nonetheless, the heterozygous duplicated state was relatively stable in the conditions prevailing during evolution in chemostats, in striking contrast to non selective conditions in which the duplication resolved at high frequency into either its ancestral or deleted copy. Conclusions Our results suggest that the duplication state may constitute a second order selection process providing higher evolutionary potential. Moreover, its heterozygous nature may provide differential evolutionary opportunities in alternating environments. Our results also highlighted how careful analyses of whole genome data are needed to identify such complex rearrangements.
- Published
- 2013
- Full Text
- View/download PDF
14. Characterization of Isoforms of Pectin Methylesterase of Linum usitatissimum Using Polyclonal Antibodies
- Author
-
Claudine Morvan, Alain Mareck, Odile Morvan, Joël Gaffé, and Caroline Alexandre
- Subjects
chemistry.chemical_classification ,Gene isoform ,Linum ,food.ingredient ,biology ,Pectin ,Physiology ,Cell Biology ,Plant Science ,General Medicine ,biology.organism_classification ,Isozyme ,Pectinesterase ,Cell wall ,Enzyme ,food ,chemistry ,Biochemistry ,Polyclonal antibodies ,biology.protein - Published
- 1995
- Full Text
- View/download PDF
15. Genomic identification of a novel mutation in hfq that provides multiple benefits in evolving glucose-limited populations of Escherichia coli
- Author
-
Dominique Schneider, Zhemin Zhou, Yang Li, Ram P. Maharjan, Thomas Ferenci, Peter R. Reeves, Yan Ren, Joël Gaffé, Christopher McKenzie, Lei Wang, Hitachi Chemical Research Center, Inc., Hitachi, Laboratoire Adaptation et pathogénie des micro-organismes [Grenoble] (LAPM), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Laboratoire Réactions et Génie des Procédés (LRGP), and Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)
- Subjects
MESH: Mutation ,Genomics ,MESH: Escherichia coli Proteins ,MESH: Host Factor 1 Protein ,Host Factor 1 Protein ,medicine.disease_cause ,MESH: Genome, Bacterial ,Microbiology ,Genome ,Evolution, Molecular ,03 medical and health sciences ,Escherichia coli ,medicine ,Molecular Biology ,MESH: Evolution, Molecular ,030304 developmental biology ,Genetics ,0303 health sciences ,Mutation ,MESH: Gene Expression Regulation, Bacterial ,biology ,030306 microbiology ,MESH: Escherichia coli ,Escherichia coli Proteins ,[SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE] ,Gene Expression Regulation, Bacterial ,biology.organism_classification ,Adaptation, Physiological ,Enterobacteriaceae ,MESH: Adaptation, Physiological ,3. Good health ,MESH: Glucose ,Glucose ,Identification (biology) ,Genome, Bacterial ,Population Genetics and Evolution ,Bacteria - Abstract
Beneficial mutations in diversifying glucose-limited Escherichia coli populations are mostly unidentified. The genome of an evolved isolate with multiple differences from that of the ancestor was fully assembled. Remarkably, a single mutation in hfq was responsible for the multiple benefits under glucose limitation through changes in at least five regulation targets.
- Published
- 2010
- Full Text
- View/download PDF
16. Biotechnological Interventions to Improve Plant Developmental Traits
- Author
-
Ajay Arora, Joël Gaffé, Martín-Ernesto Tiznado-Hernández, Pradeep Singh Negi, Zhiping Deng, Ravinder K. Goyal, Anish Malladi, Alka Srivastava, Autar K. Mattoo, and Avtar K. Handa
- Subjects
0106 biological sciences ,2. Zero hunger ,0303 health sciences ,business.industry ,food and beverages ,Living cell ,15. Life on land ,Organ development ,Biology ,01 natural sciences ,Structure and function ,Biotechnology ,Agricultural sustainability ,03 medical and health sciences ,Abscission ,Ethylene biosynthesis ,business ,030304 developmental biology ,010606 plant biology & botany - Abstract
Unprecedented progress during the last three decades in our understanding of the principles of a living cell, particularly the identification of genes and signaling pathways involved in cell differentiation and organ development, has brought us a broader insight into plant biological processes. Technological advancements are revealing new and fundamental knowledge at the molecular and cellular levels, knowledge that is critical towards achieving the goal of precision-based crop improvement. Modernday genetic engineering has emerged as a promising precision-based technology for boosting up food production in the world and introducing desirable traits such as nutritional enhancement and disease and pest resistance, both important components of agricultural sustainability (Chrispeels et al. 2002; Fatima et al. 2008; Negi and Handa 2008). Achieving results that benefit the world will depend on the success of applying new knowledge to real-world field scenarios. The challenge, therefore, is also to simultaneously obtain knowledge on agroecosystem structure and function to understand how manipulation and control of specific gene expression will translate into directing processes at the ecological scale (Mattoo and Teasdale 2009). Developmental traits are coordinated at various levels in a plant and involve organ-to-organ communications via long-distance signaling processes that integrate transcription, hormonal action and environmental cues. Thus, plant architecture, root–soil–microbe interactions, flowering, fruit (and seed) development, and fruit ripening (and seed germination) are highly regulated genetic programs that are also impacted by processes such as organ abscission, organ senescence (and ripening), and programmed cell death (PCD). We note that belowground processes provide the anchor for a healthy and robust plant (Mattoo and Teasdale 2009) but in this
- Published
- 2010
- Full Text
- View/download PDF
17. Partial purification of flax cell wall pectin methylesterase
- Author
-
Alain Jauneau, C. Morvan, Joël Gaffé, and M. Demarty
- Subjects
chemistry.chemical_classification ,Linum ,food.ingredient ,Ion exchange ,biology ,Pectin ,Chemistry ,Size-exclusion chromatography ,Plant Science ,General Medicine ,Horticulture ,biology.organism_classification ,Biochemistry ,Pectinesterase ,Cell wall ,Enzyme ,food ,Specific activity ,Molecular Biology - Abstract
Cell walls of Linum usitatissimum calli exhibited ca 1 μkat g−1 of pectin methylesterase activity (EC 3.1.1.11). Ion exchange and size exclusion chromatography gave three active fractions. The major one, representing 20% of the initial activity, with a chromatographic Mr of 100 000, and a SDS-PAGE one of 43 000 consisted of three isoforms with pIs of 5.5, 7.3 and 7.8, respectively. The second fraction, 3.5% of the initial activity, had a chromatographic Mr of 110 000, and was separated into five isoforms with pIs of 5.5, 7, 7.3, 7.8 and 8.8. The minor active fraction, 1 % of the initial activity, revealed one isoform (pI close to 10) but was contaminated with non-active proteins. The major active fraction had a Km of 0.147 mg ml−1 for a specific activity of 3.3 mkat g−1 and a complex behaviour in the presence of NaCl.
- Published
- 1992
- Full Text
- View/download PDF
18. Bases écologiques et moléculaires de la diversification adaptative chez Escherichia coli
- Author
-
Consuegra Bonilla, Jessika, Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble - UMR 5525 (TIMC-IMAG), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université Grenoble Alpes, Joël Gaffé, and Dominique Schneider
- Subjects
Régulation ,[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology ,Experimental evolution ,Diversification bactérienne ,Escherichia coli ,Evolution expérimentale ,Bacterial diversification ,Adaptation ,Contrôle métabolique ,Regulation ,Metabolic control - Abstract
Diversification events are central issues in evolution since they generate phenotypic innovation such as colonization of novel ecological niches and, ultimately, speciation. To study the ecological and molecular drivers of adaptive diversification, we used the longest still-running evolution experiment. Twelve independent populations are propagated in a glucose limited minimal medium from a common ancestor of Escherichia coli by serial daily transfers since 1988 for more than 60,000 generations. In one of the twelve populations, called Ara–2, a unique diversification event occurred: two phenotypically-differentiated lineages, named S (Small) and L (Large) according to their cell size, emerged from a common ancestor at ~ 6500 generations. The two lineages co-exist ever since, owing to negative frequency-dependent selection whereby each lineage is favored and invades the other when rare, such that no lineage gets extinct. Moreover, and before the split between the two S and L lineages, the population Ara–2 evolved a hypermutator phenotype, owing to a defect in a DNA repair gene. The objective of this thesis is to characterize the ecological, physiological and molecular mechanisms that allowed the emergence and stable co-existence of the S and L lineages.First, we used a combination of in vivo and in silico experimental evolution to determine the ecological and physiological drivers of the emergence of the polymorphism. Several ecological mechanisms including tradeoff, seasonality and character displacement are involved in the emergence and long-term persistence of diversity. In particular, we showed that the L lineage secretes acetate which generates a new ecological opportunity that the S lineage exploited. In addition, the S and L lineages became fitter and fitter over time in their respective ecological niches, respectively acetate and glucose. Second, we propagated S and L clones separately to remove competition between the two lineages. In these conditions, frequency-dependent interactions between the S and L clones evolved separately were completely abolished, revealing the importance of competition in the maintenance of the polymorphism. Third, we combined genetic, physiological and biochemical approaches to determine the role of an S-specific mutation that was previously found in arcA, encoding a global regulator, in the emergence of the S and L polymorphism. We showed that the evolved arcA allele conferred to the S lineage the capacity to growth on acetate by increasing the transcription of target genes involved in acetate consumption. During this study, we found an additional mutation, in the acs gene involved in acetate metabolism, that was also involved in the emergence of the S lineage. We further showed that these two mutations were favorable to the S lineage early during its emergence, and that other mutations occurred later that interacted epistatically with the acs and arcA evolved alleles. Therefore, these data showed that the establishment and further maintenance of the S and L polymorphism was a multi-step process involving epistatic interactions between several mutations. Fourth, we identified the long-term dynamics of mutation rates in this divergent population. A first early rise of a hypermutator was followed by a full reversion of this mutator state twice independently in each of the two S and L lineages.The emergence of a long-term bacterial polymorphism reflects a complex restructuration of the metabolic and regulatory networks in the co-existing lineages, resulting in the generation and exploitation of a new ecological opportunity. Competition and evolution of divergent resource consumption were the selective forces driving the maintenance of the polymorphism.; Les événements de diversification adaptative sont des éléments primordiaux de l'évolution. En effet, ils engendrent des innovations phénotypiques telles que la colonisation de nouvelles niches écologiques et au final, la spéciation. Afin d'étudier les ressorts écologiques et moléculaires de la diversification adaptative, nous utilisons la plus longue des expériences d'évolution en cours. Depuis 1988, soit plus de 60 000 générations, douze populations indépendantes issues d'un ancêtre commun d'Escherichia coli sont propagées quotidiennement dans un milieu minimum comportant une faible quantité de glucose.Un événement unique de diversification s'est produit dans une des 12 populations (Ara–2). Deux lignées de phénotypes différents sont apparues après environ 6500 générations, les S pour «Small» et les L pour «Large», chacune présentant des tailles cellulaires différentes. Les deux lignées coexistent grâce à une sélection négative dépendant de la fréquence qui favorise la lignée la plus rare et permet de supplanter sa concurrente; ainsi, aucune des deux lignées ne s'éteint. Avant l’événement de diversification, la population Ara–2 a développé un phénotype hypermutateur suite à la mutation d'un gène de réparation de l'ADN. L'objectif de cette thèse est de caractériser les mécanismes écologiques, physiologiques et moléculaires sous-tendant l'émergence et la coexistence des lignées S et L.En premier lieu, nous avons utilisé un ensemble d'expériences d'évolution in vivo et in silico afin de déterminer les moteurs écologiques et physiologiques de l'émergence de ce polymorphisme. Plusieurs mécanismes écologiques, incluant les compromis (trade-off évolutifs), la saisonnabilité et les déplacements de caractères interviennent dans l'émergence et la persistance de la diversité au long terme. Nous avons montré que la lignée L, en produisant de l'acétate, créait une nouvelle opportunité écologique exploitée par les S. De plus, au cours du temps, les S et les L s'adaptent à leur niche écologique, respectivement l'acétate et le glucose.En second lieu, nous avons cultivé les S et les L séparément pour éliminer la compétition entre les deux lignées. Dans ces conditions, il y a perte des interactions dépendantes de la fréquence entre les S et les L. Ceci démontre l'importance de la compétition dans le maintien du polymorphisme.En troisième lieu, nous avons combiné des approches génétiques, physiologiques et biochimiques pour déterminer le rôle, dans l'émergence du polymorphisme, d'une mutation spécifique aux S survenant dans le gène arcA, codant un régulateur global. Nous avons montré que l'allèle évolué de arcA augmentait la transcription de gènes du métabolisme de l'acétate dans la lignée S. Au cours de cette étude, nous avons identifié une mutation supplémentaire dans le gène acs, impliqué dans le métabolisme de l'acétate, intervenant dans l'émergence de la lignée S. Nous avons aussi démontré que ces deux mutations étaient favorables à la lignée S au début de son émergence, puis que des mutations plus tardives agissaient de façon épistatiques avec les allèles évolués de acs et de arcA. Ainsi, ces résultats démontrent que l'établissement et le maintien du polymorphisme des S et des L est un processus en plusieurs étapes nécessitant des interactions épistatiques entre plusieurs mutations.En quatrième lieu, nous avons identifié la dynamique au long terme des taux de mutations dans cette population. L'apparition et l'invasion rapide du phénotype hypermutateur est suivie d'une réversion complète mais indépendante dans chacune des lignées S et L.L'émergence d'un polymorphisme bactérien durable reflète une restructuration complexe des réseaux métaboliques et de régulation dans ces lignées qui co-existent, ce qui aboutit à l'apparition et à l'exploitation de nouvelles opportunités écologiques. La compétition et l'évolution de l'utilisation de ressources différentes sont des forces sélectives permettant le maintien du polymorphisme.
- Published
- 2016
19. Ecological and molecular bases of adaptive diversification in Escherichia coli
- Author
-
Consuegra Bonilla, Jessika, Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble - UMR 5525 (TIMC-IMAG), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université Grenoble Alpes, Joël Gaffé, Dominique Schneider, and STAR, ABES
- Subjects
Régulation ,[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology ,Experimental evolution ,Diversification bactérienne ,Escherichia coli ,Evolution expérimentale ,Bacterial diversification ,Adaptation ,[SDV.MP] Life Sciences [q-bio]/Microbiology and Parasitology ,Contrôle métabolique ,Regulation ,Metabolic control - Abstract
Diversification events are central issues in evolution since they generate phenotypic innovation such as colonization of novel ecological niches and, ultimately, speciation. To study the ecological and molecular drivers of adaptive diversification, we used the longest still-running evolution experiment. Twelve independent populations are propagated in a glucose limited minimal medium from a common ancestor of Escherichia coli by serial daily transfers since 1988 for more than 60,000 generations. In one of the twelve populations, called Ara–2, a unique diversification event occurred: two phenotypically-differentiated lineages, named S (Small) and L (Large) according to their cell size, emerged from a common ancestor at ~ 6500 generations. The two lineages co-exist ever since, owing to negative frequency-dependent selection whereby each lineage is favored and invades the other when rare, such that no lineage gets extinct. Moreover, and before the split between the two S and L lineages, the population Ara–2 evolved a hypermutator phenotype, owing to a defect in a DNA repair gene. The objective of this thesis is to characterize the ecological, physiological and molecular mechanisms that allowed the emergence and stable co-existence of the S and L lineages.First, we used a combination of in vivo and in silico experimental evolution to determine the ecological and physiological drivers of the emergence of the polymorphism. Several ecological mechanisms including tradeoff, seasonality and character displacement are involved in the emergence and long-term persistence of diversity. In particular, we showed that the L lineage secretes acetate which generates a new ecological opportunity that the S lineage exploited. In addition, the S and L lineages became fitter and fitter over time in their respective ecological niches, respectively acetate and glucose. Second, we propagated S and L clones separately to remove competition between the two lineages. In these conditions, frequency-dependent interactions between the S and L clones evolved separately were completely abolished, revealing the importance of competition in the maintenance of the polymorphism. Third, we combined genetic, physiological and biochemical approaches to determine the role of an S-specific mutation that was previously found in arcA, encoding a global regulator, in the emergence of the S and L polymorphism. We showed that the evolved arcA allele conferred to the S lineage the capacity to growth on acetate by increasing the transcription of target genes involved in acetate consumption. During this study, we found an additional mutation, in the acs gene involved in acetate metabolism, that was also involved in the emergence of the S lineage. We further showed that these two mutations were favorable to the S lineage early during its emergence, and that other mutations occurred later that interacted epistatically with the acs and arcA evolved alleles. Therefore, these data showed that the establishment and further maintenance of the S and L polymorphism was a multi-step process involving epistatic interactions between several mutations. Fourth, we identified the long-term dynamics of mutation rates in this divergent population. A first early rise of a hypermutator was followed by a full reversion of this mutator state twice independently in each of the two S and L lineages.The emergence of a long-term bacterial polymorphism reflects a complex restructuration of the metabolic and regulatory networks in the co-existing lineages, resulting in the generation and exploitation of a new ecological opportunity. Competition and evolution of divergent resource consumption were the selective forces driving the maintenance of the polymorphism., Les événements de diversification adaptative sont des éléments primordiaux de l'évolution. En effet, ils engendrent des innovations phénotypiques telles que la colonisation de nouvelles niches écologiques et au final, la spéciation. Afin d'étudier les ressorts écologiques et moléculaires de la diversification adaptative, nous utilisons la plus longue des expériences d'évolution en cours. Depuis 1988, soit plus de 60 000 générations, douze populations indépendantes issues d'un ancêtre commun d'Escherichia coli sont propagées quotidiennement dans un milieu minimum comportant une faible quantité de glucose.Un événement unique de diversification s'est produit dans une des 12 populations (Ara–2). Deux lignées de phénotypes différents sont apparues après environ 6500 générations, les S pour «Small» et les L pour «Large», chacune présentant des tailles cellulaires différentes. Les deux lignées coexistent grâce à une sélection négative dépendant de la fréquence qui favorise la lignée la plus rare et permet de supplanter sa concurrente; ainsi, aucune des deux lignées ne s'éteint. Avant l’événement de diversification, la population Ara–2 a développé un phénotype hypermutateur suite à la mutation d'un gène de réparation de l'ADN. L'objectif de cette thèse est de caractériser les mécanismes écologiques, physiologiques et moléculaires sous-tendant l'émergence et la coexistence des lignées S et L.En premier lieu, nous avons utilisé un ensemble d'expériences d'évolution in vivo et in silico afin de déterminer les moteurs écologiques et physiologiques de l'émergence de ce polymorphisme. Plusieurs mécanismes écologiques, incluant les compromis (trade-off évolutifs), la saisonnabilité et les déplacements de caractères interviennent dans l'émergence et la persistance de la diversité au long terme. Nous avons montré que la lignée L, en produisant de l'acétate, créait une nouvelle opportunité écologique exploitée par les S. De plus, au cours du temps, les S et les L s'adaptent à leur niche écologique, respectivement l'acétate et le glucose.En second lieu, nous avons cultivé les S et les L séparément pour éliminer la compétition entre les deux lignées. Dans ces conditions, il y a perte des interactions dépendantes de la fréquence entre les S et les L. Ceci démontre l'importance de la compétition dans le maintien du polymorphisme.En troisième lieu, nous avons combiné des approches génétiques, physiologiques et biochimiques pour déterminer le rôle, dans l'émergence du polymorphisme, d'une mutation spécifique aux S survenant dans le gène arcA, codant un régulateur global. Nous avons montré que l'allèle évolué de arcA augmentait la transcription de gènes du métabolisme de l'acétate dans la lignée S. Au cours de cette étude, nous avons identifié une mutation supplémentaire dans le gène acs, impliqué dans le métabolisme de l'acétate, intervenant dans l'émergence de la lignée S. Nous avons aussi démontré que ces deux mutations étaient favorables à la lignée S au début de son émergence, puis que des mutations plus tardives agissaient de façon épistatiques avec les allèles évolués de acs et de arcA. Ainsi, ces résultats démontrent que l'établissement et le maintien du polymorphisme des S et des L est un processus en plusieurs étapes nécessitant des interactions épistatiques entre plusieurs mutations.En quatrième lieu, nous avons identifié la dynamique au long terme des taux de mutations dans cette population. L'apparition et l'invasion rapide du phénotype hypermutateur est suivie d'une réversion complète mais indépendante dans chacune des lignées S et L.L'émergence d'un polymorphisme bactérien durable reflète une restructuration complexe des réseaux métaboliques et de régulation dans ces lignées qui co-existent, ce qui aboutit à l'apparition et à l'exploitation de nouvelles opportunités écologiques. La compétition et l'évolution de l'utilisation de ressources différentes sont des forces sélectives permettant le maintien du polymorphisme.
- Published
- 2016
20. Plasticité du génome au cours d'une expérience d'évolution au long terme chez Escherichia Coli
- Author
-
Raeside, Colin, Laboratoire Adaptation et pathogénie des micro-organismes [Grenoble] (LAPM), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Université de Grenoble, Dominique Schneider, Joël Gaffé, and STAR, ABES
- Subjects
[SDV.MP.VIR] Life Sciences [q-bio]/Microbiology and Parasitology/Virology ,Rearrangements ,Génome ,Genome ,Evolution ,[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/Virology ,Escherichia coli ,Insertion Sequence (IS) ,Réarrangements ,Adaptation ,Séquence d’Insertion (SI) - Abstract
Large-scale DNA rearrangements, including inversions, amplifications, duplications, deletions, insertions, and transposition of mobile genetic elements, are major drivers of evolution and strongly impact on chromosome organization and expression, thereby altering organismal phenotypes. However, their long-term evolutionary dynamics and effects on organismal fitness are often unknown. We addressed these questions by using the longest-running evolution experiment, during which twelve independent populations are propagated from a common E. coli ancestor in a glucose-limited environment for now over 60,000 generations (26 years). Most past studies have focused on point mutations and small InDels. Using evolved clones sampled over time in all 12 populations, we characterized all large-scale DNA rearrangements by using whole genome sequences and Whole Genome MappingTM (i.e optical mapping). After 40,000 generations, we identified a total of 110 rearrangements including 82 deletions, 19 inversions and 9 duplications. Many chromosomal regions were repeatedly affected by similar rearrangements and, at least in one population, they occurred early in evolution when fitness increase was strong. Therefore, many rearrangements may be under positive selection. At the very least, these rearrangements strongly affected the structure of the chromosome during evolution.At the molecular level, we showed that ~ 70% of all rearrangements occurred by recombination between Insertion Sequence (IS) elements, illustrating their importance in mediating genome plasticity. We therefore investigated the distribution and temporal dynamics of these small mobile genetic elements in all 12 populations. We showed that IS elements were strong contributors of the total mutations after 40,000 generations. In one population, they even represented about half of the total mutations and one IS type, IS150, revealed a strong 6-fold increase in copy number, accounting for the production of most of the rearrangements detected in this population. We showed that IS150 revealed a dynamic temporal behavior with a strong expansion followed by domestication by the host. By testing three evolutionary scenarios, we demonstrated that the IS150 expansion was related to a strong fitness increase conferred by the initial transposition events that occurred before 2000 generations. Later, between 20,000 and 40,000 generations, we measured a decreased transposition frequency, likely owing to a down regulation imposed by the host. Finally, and for the first time, we developed an evolution model of IS dynamics confirming that the IS expansion was related to a threshold number of initial IS beneficial insertions. All of our data showed that large-scale chromosomal rearrangements and IS elements have played an active role in the evolutionary outcomes after 40,000 generations of bacterial evolution., Les réarrangements d'ADN à grande échelle, tels que inversions, amplifications, duplications, délétions, insertions et transposition des éléments génétiques mobiles, sont des acteurs essentiels de l'évolution. Ils ont une forte incidence sur l'organisation et l'expression des chromosomes, ce qui affecte le phénotype des organismes. Toutefois, la dynamique de ces réarrangements au cours de l'évolution et leurs effets sur l'adaptation des organismes sont souvent inconnus. Nous avons abordé ces questions en utilisant la plus longue expérience d'évolution en cours. A partir d'un ancêtre commun d'Escherichia coli, douze populations indépendantes sont cultivées dans un milieu limité en glucose depuis plus de 60 000 générations, soit 26 ans. La plupart des études antérieures ont porté sur les mutations ponctuelles et les petites insertions et délétions (InDels). En utilisant des clones isolés au cours du temps dans ces 12 populations, nous avons caractérisé les réarrangements d'ADN à grande échelle à la fois par l'analyse des séquences de génomes et par cartographie optique. A 40 000 générations, nous avons identifié 110 réarrangements parmi lesquelles 82 délétions, 19 inversions et 9 duplications. Plusieurs régions du chromosome ont été touchées à plusieurs reprises par le même type de réarrangements dans des populations indépendantes. Dans une des populations au moins, les réarrangements se sont produits au début de l'expérience d'évolution, au moment où l'augmentation de la valeur sélective est la plus élevée. Par conséquent, certains de ces réarrangements pourraient être bénéfiques dans ces conditions. Même dans le cas contraire, nous avons montré que ces réarrangements affectaient fortement la structure du chromosome au cours de l'expérience d'évolution.Au niveau moléculaire, nous avons montré que ~ 70% des réarrangements se produisent par recombinaison entre séquences d'insertion (IS), ce qui illustre l'importance de ces dernières dans la plasticité du génome. Nous avons donc caractérisé la distribution et la dynamique de ces petits éléments génétiques mobiles dans l'ensemble des 12 populations. Nous avons montré que les éléments IS ont fortement contribué à l'ensemble des mutations après 40 000 générations. Dans une population, les IS représentent même la moitié des mutations, et un des types d'IS, IS150, présente une forte prolifération avec 6 fois plus de copies à 40 000 générations, intervenant dans la plupart des réarrangements détectés dans cette population. Nous avons montré une forte dynamique temporelle d'IS150, avec une forte expansion suivie d'une domestication par l'hôte. En testant trois scenarii évolutifs, nous avons démontré que l'expansion d'IS150 était liée à une forte augmentation de la valeur sélective conférée par les événements initiaux de transposition ayant eu lieu avant 2000 générations. Plus tard, entre 20 000 et 40 000 générations, nous avons mesuré une diminution de la fréquence de transposition, probablement en raison d'une régulation négative de la transposition imposée par l'hôte. Enfin, et pour la première fois, nous avons développé un modèle d'évolution de la dynamique des IS, qui confirme que leur expansion est liée à un nombre seuil d'insertions bénéfiques initiales. Ces résultats montrent que les réarrangements chromosomiques à grande échelle et les éléments IS ont joué un rôle actif dans la trajectoire évolutive au cours de 40 000 générations d'évolution bactérienne.
- Published
- 2014
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.