1. High-brightness betatron emission from the interaction of a sub picosecond laser pulse with pre-ionized low-density polymer foam for ICF research
- Author
-
Mikhail Gyrdymov, Jakub Cikhardt, Parysatis Tavana, Nataliya G. Borisenko, Sergey Yu. Gus´kov, Rafael A. Yakhin, Galina A. Vegunova, Wenqing Wei, Jieru Ren, Yongtao Zhao, Dieter H. H. Hoffmann, Zhigang Deng, Weimin Zhou, Rui Cheng, Jie Yang, Jan Novotny, Xiaofei Shen, Alexander Pukhov, Joachim Jacoby, Christian Spielmann, Viacheslav S. Popov, Mikhail E. Veysman, Nikolay E. Andreev, and Olga N. Rosmej
- Subjects
Medicine ,Science - Abstract
Abstract Direct laser acceleration (DLA) of electrons in plasmas of near-critical density (NCD) is a very advancing platform for high-energy PW-class lasers of moderate relativistic intensity supporting Inertial Confinement Fusion research. Experiments conducted at the PHELIX sub-PW Nd:glass laser demonstrated application-promising characteristics of DLA-based radiation and particle sources, such as ultra-high number, high directionality and high conversion efficiency. In this context, the bright synchrotron-like (betatron) radiation of DLA electrons, which arises from the interaction of a sub-ps PHELIX laser pulse with an intensity of 1019 W/cm2 with pre-ionized low-density polymer foam, was studied. The experimental results show that the betatron radiation produced by DLA electrons in NCD plasma is well directed with a half-angle of 100–200 mrad, yielding (3.4 ± 0.4)·1010 photons/keV/sr at 10 keV photon energy. The experimental photon fluence and the brilliance agree well with the particle-in-cell simulations. These results pave the way for innovative applications of the DLA regime using low-density pre-ionized foams in high energy density research.
- Published
- 2024
- Full Text
- View/download PDF