Bernard Onno, Konstantinos Koutsoumanis, Jeanne-Marie Membré, Maria Gougouli, Stéphane Dagnas, Oniris, PRES Université Nantes Angers Le Mans (UNAM), Department of Food Science and Technology, Laboratory of Food Microbiology and Hygiene, Aristotle University of Thessaloniki, Department of Food Science and Technology, Perrotis College, American Farm School, Matrices Aliments Procédés Propriétés Structure - Sensoriel (GEPEA-MAPS2), Laboratoire de génie des procédés - environnement - agroalimentaire (GEPEA), Institut Universitaire de Technologie - Nantes (IUT Nantes), Université de Nantes (UN)-Université de Nantes (UN)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut Universitaire de Technologie Saint-Nazaire (IUT Saint-Nazaire), Université de Nantes (UN)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Ecole Nationale Vétérinaire, Agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut Universitaire de Technologie - La Roche-sur-Yon (IUT La Roche-sur-Yon), Université de Nantes (UN)-Institut Universitaire de Technologie - Nantes (IUT Nantes), Université de Nantes (UN), Ecole Nationale Vétérinaire, Agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS), UMR 1014 SECurité des ALIments et Microbiologie, Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Vétérinaire, Agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Nantes (UN)-Ecole Nationale Vétérinaire, Agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Institut National de la Recherche Agronomique (INRA)-Département Microbiologie et Chaîne Alimentaire (MICA), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Vétérinaire, Agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS)-SECurité des ALIments et Microbiologie (SECALIM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN)-Institut Universitaire de Technologie - Nantes (IUT Nantes), Université de Nantes (UN)-Institut Universitaire de Technologie Saint-Nazaire (IUT Saint-Nazaire), Université de Nantes (UN)-Institut Universitaire de Technologie - La Roche-sur-Yon (IUT La Roche-sur-Yon), Université de Nantes (UN)-Ecole Nationale Vétérinaire, Agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS)-Université Bretagne Loire (UBL)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Ecole Nationale Vétérinaire, Agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS)-Université Bretagne Loire (UBL), Ecole Nationale Vétérinaire, Agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS)-Université Bretagne Loire (UBL)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Vétérinaire, Agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS)-Université Bretagne Loire (UBL)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), and Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)
9th International Conference on Predictive Modelling in Food (ICPMF); Rio de Janeiro, BRAZIL; The inhibitory effect of water activity (a(w)) and storage temperature on single spore lag times of Aspergillus niger, Eurotium repens (Aspergillus pseudoglaucus) and Penicillium corylophilum strains isolated from spoiled bakery products, was quantified. A full factorial design was set up for each strain. Data were collected at levels of a(w) varying from 0.80 to 0.98 and temperature from 15 to 35 degrees C. Experiments were performed on malt agar, at pH 5.5. When growth was observed, ca 20 individual growth kinetics per condition were recorded up to 35 days. Radius of the colony vs time was then fitted with the Buchanan primary model. For each experimental condition, a lag time variability was observed, it was characterized by its mean, standard deviation (sd) and 5th percentile, after a Normal distribution fit. As the environmental conditions became stressful ( e.g. storage temperature and a(w) lower), mean and sd of single spore lag time distribution increased, indicating longer lag times and higher variability. The relationship between mean and sd followed a monotonous but not linear pattern, identical whatever the species. Next, secondary models were deployed to estimate the cardinal values (minimal, optimal and maximal temperatures, minimal water activity where no growth is observed anymore) for the three species. That enabled to confirm the observation made based on raw data analysis: concerning the temperature effect, A. niger behaviour was significantly different from E. repens and P. corylophilum: Tops of 37.4 degrees C (standard deviation 1.4 degrees C) instead of 27.1 degrees C (1.4 degrees C) and 25.2 degrees C (1.2 degrees C), respectively. Concerning the a(w) effect, from the three mould species, E. repens was the species able to grow at the lowest a(w) (aw(min), estimated to 0.74 (0.02)). Finally, results obtained with single spores were compared to findings from a previous study carried out at the population level (Dagnas et al., 2014). For short lag times days), there was no difference between lag time of the population (ca 2000 spores inoculated in one spot) and mean (nor 5th percentile) of single spore lag time distribution. In contrast, when lag time was longer, i.e. under more stressful conditions, there was a discrepancy between individual and population lag times (population lag times shorter than 5th percentiles of single spore lag time distribution), confirming a stochastic process. Finally, the temperature cardinal values estimated with single spores were found to be similar to those obtained at the population level, whatever the species. All these findings will be used to describe better mould spore lag time variability and then to predict more accurately bakery product shelf-life.