250 results on '"Jean-Luc Rouvière"'
Search Results
2. Synthesis of relaxed Ge0.9Sn0.1/Ge by nanosecond pulsed laser melting
- Author
-
Enrico Di Russo, Francesco Sgarbossa, Pierpaolo Ranieri, Gianluigi Maggioni, Samba Ndiaye, Sébastien Duguay, François Vurpillot, Lorenzo Rigutti, Jean-Luc Rouvière, Vittorio Morandi, Davide De Salvador, Enrico Napolitani, Dipartimento di Fisica e Astronomia [Bologna], Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO), Groupe de physique des matériaux (GPM), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Magnetic Resonance (RM ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), and Consiglio Nazionale delle Ricerche [Bologna] (CNR)
- Subjects
General Physics and Astronomy ,Surfaces and Interfaces ,General Chemistry ,Condensed Matter Physics ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Surfaces, Coatings and Films ,germanium ,GeSn ,strain ,pulsed laser melting ,tin ,germanium, tin, GeSn, pulsed laser melting, strain, defects ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,defects - Abstract
International audience
- Published
- 2023
- Full Text
- View/download PDF
3. Quasi-strain-free GaN on van der Waals substrates: the case of graphene and muscovite mica
- Author
-
Oleksii Volodymyrovych Klymov, Rémy Vermeersch, Edith Bellet-Amalric, Ana Cros, Marion Gruart, Hanako Okuno, Nicolas Mollard, Jean-Luc Rouvière, Núria Garro, María José Recio-Carretero, Nathaniel Feldberg, Stéphanie Pouget, Fabrice Donatini, Bruno Gayral, Saül Garcia-Orrit, Catherine Bougerol, and Bruno Daudin
- Subjects
symbols.namesake ,Materials science ,Strain (chemistry) ,Graphene ,law ,Chemical physics ,Muscovite ,engineering ,symbols ,Mica ,engineering.material ,van der Waals force ,law.invention - Published
- 2021
- Full Text
- View/download PDF
4. Understanding the Crystallization Behavior of Surface-Oxidized GeTe Thin Films for Phase-Change Memory Application
- Author
-
Andrea N. D. Kolb, Anass Benayad, Eric Robin, C. Sabbione, Pierre Noé, Jean-Luc Rouvière, Françoise Hippert, Nicolas Bernier, Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire des matériaux et du génie physique (LMGP ), Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Département Plate-Forme Technologique (DPFT), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Surface (mathematics) ,Materials science ,Chalcogenide ,02 engineering and technology ,01 natural sciences ,law.invention ,chemistry.chemical_compound ,law ,0103 physical sciences ,Scanning transmission electron microscopy ,Materials Chemistry ,Electrochemistry ,Thin film ,Crystallization ,ComputingMilieux_MISCELLANEOUS ,010302 applied physics ,business.industry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Electronic, Optical and Magnetic Materials ,Resistive random-access memory ,Amorphous solid ,Phase-change memory ,chemistry ,Optoelectronics ,0210 nano-technology ,business - Abstract
The outstanding properties of chalcogenide phase-change materials (PCMs) led to their successful use in innovative resistive memory devices where the material is switched between its amorphous and ...
- Published
- 2019
- Full Text
- View/download PDF
5. Growth of zinc-blende GaN on muscovite mica by molecular beam epitaxy
- Author
-
Rémy Vermeersch, Edith Bellet-Amalric, Núria Garro, Nathaniel Feldberg, Fabrice Donatini, Ana Cros, Bruno Gayral, Jean-Luc Rouvière, Catherine Bougerol, Saül Garcia-Orrit, Bruno Daudin, Maria José Recio Carretero, Nanophysique et Semiconducteurs (NPSC), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Optique & Microscopies (NEEL - POM), Nanophysique et Semiconducteurs (NEEL - NPSC), Modélisation et Exploration des Matériaux (MEM), Institut Universitari de Ciencia dels Materials (ICMUV), and Universitat de València (UV)
- Subjects
[PHYS]Physics [physics] ,Materials science ,Mechanical Engineering ,Muscovite ,Nucleation ,Bioengineering ,Cathodoluminescence ,02 engineering and technology ,General Chemistry ,engineering.material ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Epitaxy ,01 natural sciences ,0104 chemical sciences ,Crystallography ,Mechanics of Materials ,Transmission electron microscopy ,engineering ,General Materials Science ,Mica ,Electrical and Electronic Engineering ,0210 nano-technology ,Wurtzite crystal structure ,Molecular beam epitaxy - Abstract
The mechanisms of plasma-assisted molecular beam epitaxial growth of GaN on muscovite mica were investigated. Using a battery of techniques, including scanning and transmission electron microscopy, atomic force microscopy, cathodoluminescence, Raman spectroscopy and x-ray diffraction, it was possible to establish that, in spite of the lattice symmetry mismatch, GaN grows in epitaxial relationship with mica, with the [11–20] GaN direction parallel to [010] direction of mica. GaN layers could be easily detached from the substrate via the delamination of the upper layers of the mica itself, discarding the hypothesis of a van der Waals growth mode. Mixture of wurtzite (hexagonal) and zinc blende (ZB) (cubic) crystallographic phases was found in the GaN layers with ratios highly dependent on the growth conditions. Interestingly, almost pure ZB GaN epitaxial layers could be obtained at high growth temperature, suggesting the existence of a specific GaN nucleation mechanism on mica and opening a new way to the growth of the thermodynamically less stable ZB GaN phase.
- Published
- 2021
- Full Text
- View/download PDF
6. The role of surface diffusion in the growth mechanism of III-nitride nanowires and nanotubes
- Author
-
Jean-Luc Rouvière, Bruno Daudin, Ana Cros, Martien Den Hertog, Alexandra-Madalina Siladie, Eric Robin, Marion Gruart, Catherine Bougerol, Benedikt Haas, Maria-José Recio-Carretero, Núria Garro, Nanophysique et Semiconducteurs (NPSC), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Matériaux, Rayonnements, Structure (NEEL - MRS), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Nanophysique et Semiconducteurs (NEEL - NPSC), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut Universitari de Ciencia dels Materials (ICMUV), Universitat de València (UV), Matériaux, Rayonnements, Structure (MRS), Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
Surface diffusion ,Materials science ,Mechanical Engineering ,Diffusion ,Superlattice ,Nucleation ,Nanowire ,Bioengineering ,02 engineering and technology ,General Chemistry ,Nitride ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Catalysis ,Mechanics of Materials ,Chemical physics ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,General Materials Science ,Electrical and Electronic Engineering ,0210 nano-technology ,Molecular beam epitaxy - Abstract
The spontaneous growth of GaN nanowires (NWs) in absence of catalyst is controlled by the Ga flux impinging both directly on the top and on the side walls and diffusing to the top. The presence of diffusion barriers on the top surface and at the frontier between the top and the sidewalls, however, causes an inhomogeneous distribution of Ga adatoms at the NW top surface resulting in a GaN accumulation in its periphery. The increased nucleation rate in the periphery promotes the spontaneous formation of superlattices in InGaN and AlGaN NWs. In the case of AlN NWs, the presence of Mg can enhance the otherwise short Al diffusion length along the sidewalls inducing the formation of AlN nanotubes.
- Published
- 2020
- Full Text
- View/download PDF
7. Full characterization and modeling of graded interfaces in a high lattice-mismatch axial nanowire heterostructure
- Author
-
Moïra Hocevar, Petr Stepanov, Frank Glas, D. V. Beznasyuk, Jean-Luc Rouvière, Julien Claudon, Marcel A. Verheijen, Nanophysique et Semiconducteurs (NPSC), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Eindhoven University of Technology [Eindhoven] (TU/e), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Eurofins Materials Science Netherlands, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Nanophysique et Semiconducteurs (NEEL - NPSC), ANR-16-CE09-0010,QDOT,Transducteurs optomécaniques à base de boites quantiques(2016), Plasma & Materials Processing, Photonics and Semiconductor Nanophysics, and Atomic scale processing
- Subjects
Electron mobility ,Materials science ,Physics and Astronomy (miscellaneous) ,Nanowire ,FOS: Physical sciences ,Physics::Optics ,02 engineering and technology ,Parameter space ,01 natural sciences ,Condensed Matter::Materials Science ,0103 physical sciences ,General Materials Science ,010306 general physics ,High-resolution transmission electron microscopy ,[PHYS]Physics [physics] ,Condensed Matter - Materials Science ,business.industry ,Materials Science (cond-mat.mtrl-sci) ,Heterojunction ,Radius ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,021001 nanoscience & nanotechnology ,Piezoelectricity ,Characterization (materials science) ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Optoelectronics ,0210 nano-technology ,business - Abstract
Controlling the strain level in nanowire heterostructures is critical for obtaining coherent interfaces of high crystalline quality and for the setting of functional properties such as photon emission, carrier mobility or piezoelectricity. In a nanowire axial heterostructure featuring a sharp interface, strain is set by the materials lattice mismatch and the nanowire radius. Here, we show that introducing a graded interface in nanowire heterostructures offers an additional parameter to control strain. For a given interface length and lattice mismatch, we first derive theoretically the maximum nanowire radius below which coherent growth is possible. We validate these findings by growing and characterizing various In(Ga)As/GaAs nanowire heterostructures with graded interfaces. Furthermore, we perform a complete chemical and structural characterization of the interface by combining energy-dispersive X-ray spectroscopy and high resolution transmission electron microscopy. In the case of coherent growth, we directly observe that the mismatch strain relaxes elastically on the side walls of the nanowire around the interface area, while the core of the nanowire remains partially strained. Moreover, our experimental data show good agreement with finite element calculations. This analysis confirms in particular that mechanical strain is largely reduced by interface grading. Overall, our work extends the parameter space for the design of nanowire heterostructures, thus opening new opportunities for nanowire optoelectronics., Comment: 8 pages, 6 figures
- Published
- 2020
- Full Text
- View/download PDF
8. Influence of milling on structural and microstructural properties of cerium oxide: Consequence of the surface activation on the dissolution kinetics in nitric acid
- Author
-
Hanako Okuno, Thibaud Delahaye, Pascal Roussel, Gilles Leturcq, Julia Hidalgo, and Jean-Luc Rouvière
- Subjects
Cerium oxide ,Metals and Alloys ,Oxide ,chemistry.chemical_element ,02 engineering and technology ,Activation energy ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Industrial and Manufacturing Engineering ,0104 chemical sciences ,chemistry.chemical_compound ,Cerium ,chemistry ,Chemical engineering ,Leaching (chemistry) ,Specific surface area ,Materials Chemistry ,Crystallite ,0210 nano-technology ,Dissolution - Abstract
Ceria (CeO2) is known as a refractory oxide for dissolution in nitric acid, since the leaching reaction is thermodynamically unfavorable, except when it is complexed by nitrates but with very slow kinetics. To enhance dissolution, surface activation was achieved using high-energy milling. With the mechanically-activated cerium oxide, leaching in nitric acid reached 36%. The mechanical activation of the solid caused structural and microstructural changes (particle size, specific surface area, crystallite size, lattice strain, defects…). After one hour, the cleavage induced by energetic milling generated two populations: nanoparticles and grains containing defects like dislocations. Beside crystallite size and micro-strain evaluation using X-ray diffraction, cerium oxidation state was measured by Electron Energy-Loss Spectroscopy (EELS) analyses while linear defects were pictured by Transmission Electron Microscopy (TEM) observations. On one hand, it was found that the nanoparticles formed during milling process greatly enhance the dissolution reaction by the creation of Ce3+ thin layers of a few nanometer depth on their surfaces. On the other hand, it is shown that dislocations represent another way to increase the kinetics by activation energy. In conclusion, dissolution rate's growth can be due to different parameters like the leaching of the smallest particles, the presence of reduced oxidation state on nanoparticles and some highly reactive sites concentrating structural defects such as dislocation nodes. Finally, as ceria is also well known to be a safe analogue of PuO2, especially for dissolution studies, a solution for improving the dissolution of ceria would probably also be useful for dissolving the oxides rich in Pu.
- Published
- 2022
- Full Text
- View/download PDF
9. Determination of atomic vacancies in InAs/GaSb strained-layer superlattices by atomic strain
- Author
-
Yifei Meng, Jian-Min Zuo, Jean-Luc Rouvière, Ji-Hwan Kwon, Honggyu Kim, University of Illinois System, Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
compound semiconductors ,Nanostructure ,Materials science ,Superlattice ,02 engineering and technology ,Electronic structure ,01 natural sciences ,Biochemistry ,atomic vacancies ,Ion ,Condensed Matter::Materials Science ,Lattice (order) ,Vacancy defect ,0103 physical sciences ,Physics::Atomic and Molecular Clusters ,General Materials Science ,ComputingMilieux_MISCELLANEOUS ,defects ,010302 applied physics ,[PHYS]Physics [physics] ,Condensed Matter::Quantum Gases ,Crystallography ,Condensed matter physics ,business.industry ,Condensed Matter::Other ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Research Papers ,strained-layer superlattices ,Semiconductor ,QD901-999 ,Compound semiconductor ,0210 nano-technology ,business ,properties of solids - Abstract
Atomic vacancies in complex crystals can be determined by atomic-resolution strain mapping at picometre precision using scanning transmission electron microscopy. The method is applied to InAs/GaSb superlattices., Determining vacancy in complex crystals or nanostructures represents an outstanding crystallographic problem that has a large impact on technology, especially for semiconductors, where vacancies introduce defect levels and modify the electronic structure. However, vacancy is hard to locate and its structure is difficult to probe experimentally. Reported here are atomic vacancies in the InAs/GaSb strained-layer superlattice (SLS) determined by atomic-resolution strain mapping at picometre precision. It is shown that cation and anion vacancies in the InAs/GaSb SLS give rise to local lattice relaxations, especially the nearest atoms, which can be detected using a statistical method and confirmed by simulation. The ability to map vacancy defect-induced strain and identify its location represents significant progress in the study of vacancy defects in compound semiconductors.
- Published
- 2018
- Full Text
- View/download PDF
10. Joint de grains dans le silicium et suite du nombre d'argent
- Author
-
Jean-Luc Rouvière, Nina Gunkelmann, Damien Caliste, F. Lançon, Laboratory of Atomistic Simulation (LSIM ), Modélisation et Exploration des Matériaux (MEM), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Clausthal University of Technology (TU Clausthal), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
Sequence ,Fibonacci number ,Materials science ,Condensed matter physics ,Silicon ,chemistry.chemical_element ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph] ,Tilt (optics) ,chemistry ,Silver ratio ,0103 physical sciences ,Golden ratio ,Grain boundary ,010306 general physics ,0210 nano-technology ,Focus (optics) - Abstract
International audience; A scheme is proposed to solve the structure of incommensurate interfaces, starting from high-resolution images of electron microscopy, supplemented by adapted simulation techniques and complemented by theoretical tools. Direct silicon bonding is a way to produce artificial interfaces, in particular incommensurate ones. We focus on a technology-driven tilt grain boundary in silicon. While the Fibonacci sequence, linked to the golden ratio, is a prototype of the quasicrystalline structures, a silver-ratio sequence allows us to analyze this incommensurate interface. The four-fold coordination of the Si atoms is kept at the interface.; Une procédure est proposée pour résoudre la structure d'interfaces incommensurables, en partant d'images de microscopie électronique de haute résolution, en complétant avec des techniques de simulation adaptées et en parachevant avec des outils théoriques. Le collage de plaques de silicium est une manière de créer des interfaces artificielles, en particulier de type incommensurable. Nous nous concentrons sur un joint de grains de flexion dans le silicium, joint ayant un intérêt technologique. Alors que la suite de Fibonacci, liée au nombre d'or, est un prototype des structures quasi-cristallines, la suite du nombre d'argent nous permet d'analyser cette interface incommensurable. La tétravalence des atomes de silicium est conservée à l'interface.
- Published
- 2019
- Full Text
- View/download PDF
11. Polarity conversion of GaN nanowires grown by plasma-assisted molecular beam epitaxy
- Author
-
Gwénolé Jacopin, Jean-Luc Rouvière, Bruno Daudin, Ana Cros, Núria Garro, Alexandre Concordel, Bruno Gayral, Semi-conducteurs à large bande interdite (SC2G ), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Nanophysique et Semiconducteurs (NPSC), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Univ Valencia, Inst Ciencia Mat, E-46980 Paterna, Valencia, Spain, Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Semi-conducteurs à large bande interdite (NEEL - SC2G), and Universitat Politècnica de València (UPV)
- Subjects
010302 applied physics ,Kelvin probe force microscope ,Polarity reversal ,Materials science ,Physics and Astronomy (miscellaneous) ,Polarity (physics) ,business.industry ,Nanowire ,Cathodoluminescence ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,7. Clean energy ,Isotropic etching ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Nanolithography ,0103 physical sciences ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Optoelectronics ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,0210 nano-technology ,business ,Molecular beam epitaxy - Abstract
International audience; It is demonstrated that the N-polarity of GaN nanowires (NWs) spontaneously nucleated on Si (111) by molecular beam epitaxy can be reversed by intercalation of an Al-or Ga-oxynitride thin layer. The polarity change has been assessed by a combination of chemical etching, Kelvin probe force microscopy, cathodo-and photoluminescence spectroscopy and transmission electron microscopy experiments. Cathodoluminescence of the Ga-polar NW section exhibits a higher intensity in the band edge region, consistent with a reduced incorporation of chemical impurities. The polarity reversal method we propose opens the path to the integration of optimized metal-polar NW devices on any kind of substrates.
- Published
- 2019
- Full Text
- View/download PDF
12. In Situ Transmission Electron Microscopy Analysis of Aluminum–Germanium Nanowire Solid-State Reaction
- Author
-
C. Zeiner, Martien Den Hertog, Khalil El Hajraoui, Eric Robin, Alois Lugstein, Jean-Luc Rouvière, Stéphanie Kodjikian, Matériaux, Rayonnements, Structure (NEEL - MRS), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Vienna University of Technology (TU Wien), Silicon Nanoelectronics Photonics and Structures (SiNaps), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Matériaux, Rayonnements, Structure [?-2015] (MRS [?-2015]), Institut Néel [2007-2015] (NEEL [2007-2015]), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude des Matériaux par Microscopie Avancée [?-2019] (LEMMA [?-2019]), Institute of Solid State Physics, Technical University of Vienna (TUW), Technical University of Vienna [Vienna] (TU WIEN), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Matériaux, Rayonnements, Structure (MRS), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
Ge nanowire ,Materials science ,Analytical chemistry ,Energy-dispersive X-ray spectroscopy ,Nanowire ,chemistry.chemical_element ,Bioengineering ,Germanium ,02 engineering and technology ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,aluminum contact ,Reaction rate ,energy dispersive X-ray spectroscopy ,General Materials Science ,Diffusion (business) ,ComputingMilieux_MISCELLANEOUS ,in situ transmission electron microscopy ,Surface diffusion ,solid state reaction ,Mechanical Engineering ,diffusion ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Electrical contacts ,chemistry ,Electron diffraction ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,0210 nano-technology - Abstract
International audience; To fully exploit the potential of semiconduct-ing nanowires for devices, high quality electrical contacts are of paramount importance. This work presents a detailed in situ transmission electron microscopy (TEM) study of a very promising type of NW contact where aluminum metal enters the germanium semiconducting nanowire to form an extremely abrupt and clean axial metal−semiconductor interface. We study this solid-state reaction between the aluminum contact and germanium nanowire in situ in the TEM using two different local heating methods. Following the reaction interface of the intrusion of Al in the Ge nanowire shows that at temperatures between 250 and 330°C the position of the interface as a function of time is well fitted by a square root function, indicating that the reaction rate is limited by a diffusion process. Combining both chemical analysis and electron diffraction we find that the Ge of the nanowire core is completely exchanged by the entering Al atoms that form a monocrystalline nanowire with the usual face-centered cubic structure of Al, where the nanowire dimensions are inherited from the initial Ge nanowire. Model-based chemical mapping by energy dispersive X-ray spectroscopy (EDX) characterization reveals the three-dimensional chemical cross-section of the transformed nanowire with an Al core, surrounded by a thin pure Ge (∼2 nm), Al 2 O 3 (∼3 nm), and Ge containing Al 2 O 3 (∼1 nm) layer, respectively. The presence of Ge containing shells around the Al core indicates that Ge diffuses back into the metal reservoir by surface diffusion, which was confirmed by the detection of Ge atoms in the Al metal line by EDX analysis. Fitting a diffusion equation to the kinetic data allows the extraction of the diffusion coefficient at two different temperatures, which shows a good agreement with diffusion coefficients from literature for self-diffusion of Al.
- Published
- 2019
- Full Text
- View/download PDF
13. In Situ Transmission Electron Microscopy Analysis of Copper–Germanium Nanowire Solid-State Reaction
- Author
-
Khalil El hajraoui, Eric Robin, Clemens Zeiner, Alois Lugstein, Stéphanie Kodjikian, Jean-Luc Rouvière, Martien Den Hertog, Matériaux, Rayonnements, Structure (MRS), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institute of Solid State Physics, Technical University of Vienna (TUW), Vienna University of Technology (TU Wien), Optique et microscopies (POM), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), ANR-12-JS10-0002,COSMOS,Correlation du microscopie électronique en transmission avec des mesures optique et électrique effectués sur le même nanofils unique(2012), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Institut de Physique de Rennes (IPR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Technical University of Vienna [Vienna] (TU WIEN), Optique et microscopies (POM ), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA), Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Matériaux, Rayonnements, Structure (NEEL - MRS), Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Optique & Microscopies (NEEL - POM), and Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
- Subjects
010302 applied physics ,[PHYS]Physics [physics] ,Mechanical Engineering ,In-situ Transmission Electron Microscopy ,Surface Diffusion ,Ge nanowires ,Bioengineering ,02 engineering and technology ,General Chemistry ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Energy Dispersive X-ray Spectroscopy ,0103 physical sciences ,General Materials Science ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS ,Solid-state reaction - Abstract
International audience; A promising approach of making high quality contacts on semiconductors is a silicidation (for silicon) or germanidation (for germanium) annealing process, where the metal enters the semiconductor and creates a low resistance intermetallic phase. In a nanowire, this process allows one to fabricate axial heterostructures with dimensions depending only on the control and understanding of the thermally induced solid-state reaction. In this work, we present the first observation of both germanium and copper diffusion in opposite directions during the solid-state reaction of Cu contacts on Ge nanowires using in situ Joule heating in a transmission electron microscope. The in situ observations allow us to follow the reaction in real time with nanometer spatial resolution. We follow the advancement of the reaction interface over time, which gives precious information on the kinetics of this reaction. We combine the kinetic study with ex situ characterization using model-based energy dispersive X-ray spectroscopy (EDX) indicating that both Ge and Cu diffuse at the surface of the created Cu3Ge segment and the reaction rate is limited by Ge surface diffusion at temperatures between 360 and 600 °C. During the reaction, germanide crystals typically protrude from the reacted NW part. However, their formation can be avoided using a shell around the initial Ge NW. Ha direct Joule heating experiments show slower reaction speeds indicating that the reaction can be initiated at lower temperatures. Moreover, they allow combining electrical measurements and heating in a single contacting scheme, rendering the Cu–Ge NW system promising for applications where very abrupt contacts and a perfectly controlled size of the semiconducting region is required. Clearly, in situ TEM is a powerful technique to better understand the reaction kinetics and mechanism of metal–semiconductor phase formation.
- Published
- 2019
- Full Text
- View/download PDF
14. Direct comparison of off-axis holography and differential phase contrast for the mapping of electric fields in semiconductors by transmission electron microscopy
- Author
-
David Cooper, Remy Berthier, Jean-Luc Rouvière, Victor Boureau, Benedikt Haas, Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), European Project: 306535,EC:FP7:ERC,ERC-2012-StG_20111012,HOLOVIEW(2012), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Laboratoire d'Etude des Matériaux par Microscopie Avancée [?-2019] (LEMMA [?-2019]), and STMicroelectronics [Crolles] (ST-CROLLES)
- Subjects
Microscope ,Materials science ,Superlattice ,Holography ,02 engineering and technology ,01 natural sciences ,Electron holography ,[SPI.MAT]Engineering Sciences [physics]/Materials ,law.invention ,[SPI]Engineering Sciences [physics] ,Optics ,law ,Electric field ,0103 physical sciences ,Differential phase contrast ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Instrumentation ,ComputingMilieux_MISCELLANEOUS ,010302 applied physics ,business.industry ,Scattering ,021001 nanoscience & nanotechnology ,Field mapping ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,Semiconductor ,Semiconductors ,[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,0210 nano-technology ,business ,Transmission electron microscopy ,Voltage - Abstract
International audience; To provide a direct comparison, off-axis holography and differential phase contrast have been performed using the same microscope on the same specimens for the measurement of active dopants and piezoelectric fields. The sensitivity and spatial resolution of the two techniques have been assessed through the study of a simple silicon p-n junction observed at different bias voltages applied in-situ. For an evaluation of limitations and artefacts of the methods in more complicated systems a silicon pMOS device and an InGaN/GaN superlattice with 2.2-nm In0.15Ga0.85N quantum wells is investigated. We demonstrate the effects of dynamical scattering on the electric field measurements in the presence of local strain-induced sample tilts and its dependence on parameters like the convergence angle.
- Published
- 2019
- Full Text
- View/download PDF
15. Proposition of a model elucidating the AlN-on-Si (111) microstructure
- Author
-
Guy Feuillet, Jean-Luc Rouvière, Fabrice Semond, Philippe Vennéguès, Eric Frayssinet, N. Mante, Ludovic Largeau, Stephanie Rennesson, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre de recherche sur l'hétéroepitaxie et ses applications (CRHEA), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Département d'Optronique (DOPT), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Centre National de la Recherche Scientifique (CNRS)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA), Laboratoire d'Etude des Matériaux par Microscopie Avancée [?-2019] (LEMMA [?-2019]), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Université Nice Sophia Antipolis (1965 - 2019) (UNS)
- Subjects
010302 applied physics ,Diffraction ,[PHYS]Physics [physics] ,Misorientation ,Condensed matter physics ,Nucleation ,General Physics and Astronomy ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Epitaxy ,Microstructure ,01 natural sciences ,Surface energy ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Lattice constant ,[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] ,0103 physical sciences ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS ,Molecular beam epitaxy - Abstract
AlN-on-Si can be considered as a model system for heteroepitaxial growth of highly mismatched materials. Indeed, AlN and Si drastically differ in terms of chemistry, crystalline structure, and lattice parameters. In this paper, we present a transmission electron microscopy and grazing incidence X-ray diffraction study of the microstructure of AlN layers epitaxially grown on Si (111) by molecular beam epitaxy. The large interfacial energy due to the dissimilarities between AlN and Si results in a 3D Volmer-Weber growth mode with the nucleation of independent and relaxed AlN islands. Despite a well-defined epitaxial relationship, these islands exhibit in-plane misorientations up to 6°–7°. We propose a model which quantitatively explains these misorientations by taking into account the relaxation of the islands through the introduction of 60° a-type misfit dislocations. Threading dislocations (TDs) are formed to compensate these misorientations when islands coalesce. TD density depends on two parameters: the islands' misorientation and density. We show that the former is related to the mismatch between AlN and Si, while the latter depends on the growth parameters. A large decrease in TD density occurs during the 3D growth stage by overlap and overgrowth of highly misoriented islands. On the other hand, the TD density does not change significantly when the growth becomes 2D. The proposed model, explaining the misorientations of 3D-grown islands, may be extended to other (0001)-oriented III-nitrides and more generally to any heteroepitaxial system exhibiting a 3D Volmer-Weber growth mode with islands relaxed thanks to the introduction of mixed-type misfit dislocations.AlN-on-Si can be considered as a model system for heteroepitaxial growth of highly mismatched materials. Indeed, AlN and Si drastically differ in terms of chemistry, crystalline structure, and lattice parameters. In this paper, we present a transmission electron microscopy and grazing incidence X-ray diffraction study of the microstructure of AlN layers epitaxially grown on Si (111) by molecular beam epitaxy. The large interfacial energy due to the dissimilarities between AlN and Si results in a 3D Volmer-Weber growth mode with the nucleation of independent and relaxed AlN islands. Despite a well-defined epitaxial relationship, these islands exhibit in-plane misorientations up to 6°–7°. We propose a model which quantitatively explains these misorientations by taking into account the relaxation of the islands through the introduction of 60° a-type misfit dislocations. Threading dislocations (TDs) are formed to compensate these misorientations when islands coalesce. TD density depends on two parameters: the...
- Published
- 2018
- Full Text
- View/download PDF
16. InAs/GaSb thin layers directly grown on nominal (001)-Si substrate by MOCVD for the fabrication of InAs FINFET
- Author
-
Tiphaine Cerba, Mickaël Martin, Jeremy Moeyaert, Reynald Alcotte, Bassem Salem, Etienne Eustache, Philippe Bézard, Xavier Chevalier, Geoffrey Lombard, Franck Bassani, Sylvain David, Jean-Luc Rouvière, George Beainy, Laurent Cerutti, Jean-Baptiste Rodriguez, Eric Tournié, Hervé Boutry, Maryline Bawedin, Thierry Baron, Laboratoire des technologies de la microélectronique (LTM ), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Microélectronique, Electromagnétisme et Photonique - Laboratoire d'Hyperfréquences et Caractérisation (IMEP-LAHC ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Arkema (ARKEMA), Arkema (Arkema), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut d’Electronique et des Systèmes (IES), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Composants à Nanostructure pour le moyen infrarouge (NANOMIR), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), and Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
- Subjects
[PHYS]Physics [physics] - Abstract
session III-V Devices on Group IV Substrates (6A-2.2); International audience
- Published
- 2018
17. Understanding and improving the low optical emission of InGaAs quantum wells grown on oxidized patterned (001) silicon substrate
- Author
-
Sylvain David, Thierry Baron, Nicolas Bernier, Mickael Martin, Joyce Roque, Benedikt Haas, Jean-Luc Rouvière, Patrice Gergaud, François Bertin, Névine Rochat, Bassem Salem, J. Moeyaert, Laboratoire des technologies de la microélectronique (LTM ), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), ANR-10-LABX-0055,MINOS Lab,Minatec Novel Devices Scaling Laboratory(2010), European Project: 692527,H2020,H2020-ECSEL-2015-1-RIA-two-stage,3DAM(2016), and Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
- Subjects
010302 applied physics ,[PHYS]Physics [physics] ,Materials science ,Physics and Astronomy (miscellaneous) ,Silicon ,Band gap ,business.industry ,chemistry.chemical_element ,Cathodoluminescence ,02 engineering and technology ,Chemical vapor deposition ,Substrate (electronics) ,021001 nanoscience & nanotechnology ,01 natural sciences ,chemistry ,0103 physical sciences ,Scanning transmission electron microscopy ,Optoelectronics ,0210 nano-technology ,business ,Quantum well ,Indium - Abstract
International audience; In0.3Ga0.7As quantum wells (QW) embedded in AlGaAs barriers and grown on oxidized patterned (001) silicon substrates by metalorganic chemical vapor deposition using the aspect ratio trapping method are studied. An appropriate method combining cathodoluminescence and high resolution scanning transmission electron microscopy characterization is performed to spatially correlate the optical and structural properties of the QW. A triple period (TP) ordering along the < 111 > direction induced by the temperature decrease during the growth to favor indium incorporation and aligned along the oxidized patterns is observed in the QW. Local ordering affects the band gap and contributes to the decrease of the optical emission efficiency. Using thermal annealing, we were able to remove the TP ordering and improve the QW optical emission by two orders of magnitude.
- Published
- 2018
- Full Text
- View/download PDF
18. Graphene as a Mechanically Active, Deformable Two-Dimensional Surfactant
- Author
-
Valérie Guisset, Sergio Vlaic, Loïc Huder, Claude Chapelier, Andrea Locatelli, Benjamin Canals, Laurence Magaud, Jean-Luc Rouvière, Alexandre Artaud, Benitos Santos, Vincent T. Renard, Philippe David, Amina Kimouche, Johann Coraux, Nicolas Rougemaille, Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Micro et NanoMagnétisme (NEEL - MNM), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Systèmes hybrides de basse dimensionnalité (NEEL - HYBRID), Laboratoire de Transport Electronique Quantique et Supraconductivité (LaTEQS), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Elettra Sincrotrone Trieste, Epitaxie et couches minces (NEEL- EpiCM), Théorie de la Matière Condensée (NEEL - TMC), ANR-10-BLAN-1019,NMGEM,Nanomagnétisme sur Graphène Epitaxié sur Métaux(2010), ANR-12-BS10-0004,NANOCELLS,Cellules ordonnées – une nouvelle phase de carbone(2012), European Project: 246073,EC:FP7:NMP,FP7-NMP-2009-SMALL-3,GRENADA(2011), Micro et NanoMagnétisme (MNM ), Systèmes hybrides de basse dimensionnalité (HYBRID), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Epitaxie et couches minces (EpiCM ), and Théorie de la Matière Condensée (TMC )
- Subjects
Materials science ,FOS: Physical sciences ,Crystal growth ,02 engineering and technology ,01 natural sciences ,law.invention ,Metal ,law ,0103 physical sciences ,Molecule ,General Materials Science ,Kinetic Monte Carlo ,Physical and Theoretical Chemistry ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,Condensed Matter - Materials Science ,Graphene ,Elastic energy ,Materials Science (cond-mat.mtrl-sci) ,021001 nanoscience & nanotechnology ,Covalent bond ,Chemical physics ,visual_art ,visual_art.visual_art_medium ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Scanning tunneling microscope ,0210 nano-technology - Abstract
In crystal growth, surfactants are additive molecules used in dilute amount or as dense, permeable layers to control surface morphologies. Here, we investigate the properties of a strikingly different surfactant: a two-dimensional and covalent layer with close atomic packing, graphene. Using in situ, real time electron microscopy, scanning tunneling microscopy, kinetic Monte Carlo simulations, and continuum mechanics calculations, we reveal why metallic atomic layers can grow in a two-dimensional manner below an impermeable graphene membrane. Upon metal growth, graphene dynamically opens nanochannels called wrinkles, facilitating mass transport, while at the same time storing and releasing elastic energy via lattice distortions. Graphene thus behaves as a mechanically active, deformable surfactant. The wrinkle-driven mass transport of the metallic layer intercalated between graphene and the substrate is observed for two graphene-based systems, characterized by different physico-chemical interactions, between graphene and the substrate, and between the intercalated material and graphene. The deformable surfactant character of graphene that we unveil should then apply to a broad variety of species, opening new avenues for using graphene as a two-dimensional surfactant forcing the growth of flat films, nanostructures and unconventional crystalline phases.
- Published
- 2018
- Full Text
- View/download PDF
19. Strain, stress, and mechanical relaxation in fin-patterned Si/SiGe multilayers for sub-7 nm nanosheet gate-all-around device technology
- Author
-
Nicolas Bernier, Nicolas Loubet, R. Coquand, Tenko Yamashita, James Chingwei Li, O. Faynot, J. Gaudiello, Sylvain Barraud, G. Audoit, Shay Reboh, E. Augendre, Jean-Luc Rouvière, Narciso Gambacorti, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de Génie Civil et d'Ingénierie Environnementale (LGCIE), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), STMicroelectronics [Crolles] (ST-CROLLES), Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), IBM Corporation, New York, IBM Corporation, and Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
- Subjects
010302 applied physics ,[PHYS]Physics [physics] ,Materials science ,Physics and Astronomy (miscellaneous) ,Silicon ,business.industry ,Stress–strain curve ,chemistry.chemical_element ,Silicon on insulator ,Germanium ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Strain engineering ,Semiconductor ,chemistry ,Nanoelectronics ,0103 physical sciences ,Optoelectronics ,0210 nano-technology ,business ,ComputingMilieux_MISCELLANEOUS ,Nanosheet - Abstract
Pre-strained fin-patterned Si/SiGe multilayer structures for sub-7 nm stacked gate-all-around Si-technology transistors that have been grown onto bulk-Si, virtually relaxed SiGe, strained Silicon-On-Insulator, and compressive SiGe-On-Insulator were investigated. From strain maps with a nanometer spatial resolution obtained by transmission electron microscopy, we developed 3D quantitative numerical models describing the mechanics of the structures. While elastic interactions describe every other system reported here, the patterning on the compressive SiGe-On-Insulator substrate that is fabricated by Ge-condensation results in relaxation along the semiconductor/insulator interface, revealing a latent plasticity mechanism. As a consequence, Si layers with a uniaxial stress of 1.4 GPa are obtained, bringing fresh perspectives for strain engineering in advanced devices. These findings could be extended to other semiconductor technologies.
- Published
- 2018
- Full Text
- View/download PDF
20. Quantitative analysis of AIN/GaN HRTEM images
- Author
-
Guillaume Radtke, Eva Monroy, Bruno Daudin, Eirini Sarigiannidou, Jean-Luc Rouvière, and Pascale Bayle-Guillemaud
- Subjects
Materials science ,Analytical chemistry ,High-resolution transmission electron microscopy ,Quantitative analysis (chemistry) - Published
- 2018
- Full Text
- View/download PDF
21. Detailed geometrical characterisation of a surfacial Si (100) grain boundary
- Author
-
Hubert Moriceau, K. Rousseau, F Fournee, Joël Eymery, Jean-Paul Morniroli, and Jean-Luc Rouvière
- Subjects
Materials science ,Geometry ,Grain boundary - Published
- 2018
- Full Text
- View/download PDF
22. Anti phase boundary free GaSb layer grown on 300 mm (001)-Si substrate by metal organic chemical vapor deposition
- Author
-
Y. Bogumilowicz, T. Cerba, Hervé Boutry, Eric Tournié, Thierry Baron, Patrice Gergaud, Jean-Luc Rouvière, R. Alcotte, M. Bawedin, Franck Bassani, Laurent Cerutti, Mickael Martin, J. Moeyaert, Jean-Baptiste Rodriguez, Sylvain David, Laboratoire des technologies de la microélectronique (LTM ), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut d’Electronique et des Systèmes (IES), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Composants à Nanostructure pour le moyen infrarouge (NANOMIR), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut de Microélectronique, Electromagnétisme et Photonique - Laboratoire d'Hyperfréquences et Caractérisation (IMEP-LAHC ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), ANR-10-LABX-0055,MINOS Lab,Minatec Novel Devices Scaling Laboratory(2010), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
Phase boundary ,Materials science ,Silicon substrate ,02 engineering and technology ,Chemical vapor deposition ,Two-step growth ,01 natural sciences ,Metal organic chemical vapor deposition ,Metal ,Surface roughness ,Si substrate ,0103 physical sciences ,Materials Chemistry ,010302 applied physics ,[PHYS]Physics [physics] ,Metals and Alloys ,Surfaces and Interfaces ,021001 nanoscience & nanotechnology ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,X-ray diffraction ,Crystallography ,Chemical engineering ,visual_art ,visual_art.visual_art_medium ,0210 nano-technology ,Layer (electronics) ,Gallium antimonide ,Rocking-curve - Abstract
International audience; Antiphase boundaries free GaSb epitaxial layers with low surface roughness (< 0.5 nm) have been synthesized on standard microelectronic 300 mm nominal (001)-Si substrates by metal organic chemical vapor deposition using a two-step growth process. By adjusting the growth temperature and the thickness of the nucleation layer, antiphase boundary free GaSb layers as thin as 250 nm are obtained. The 12% lattice mismatch between GaSb and Si is accommodated by both the formation of threading dislocations and a periodic array of 90° misfit dislocations at the interface. A GaSb layer inserted between AlSb barriers has been grown on an optimized GaSb/(001)-Si buffer layer and exhibits room temperature photoluminescence.
- Published
- 2018
- Full Text
- View/download PDF
23. Combining 2 nm Spatial Resolution and 0.02% Precision for Deformation Mapping of Semiconductor Specimens in a Transmission Electron Microscope by Precession Electron Diffraction
- Author
-
Nicolas Bernier, David Cooper, Jean-Luc Rouvière, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), European Project: 306535,HOLOVIEW, and Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
- Subjects
Relaxation ,Strain Mapping ,Materials science ,Thin-Films ,Holography ,Bioengineering ,02 engineering and technology ,Deformation (meteorology) ,01 natural sciences ,Strain-Measurements ,law.invention ,Stress (mechanics) ,Optics ,law ,0103 physical sciences ,Devices ,Transmission ,Precession electron diffraction ,Electron Microscopy ,General Materials Science ,Image resolution ,[PHYS]Physics [physics] ,010302 applied physics ,Fields ,business.industry ,Mechanical Engineering ,technology, industry, and agriculture ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Semiconductor ,Semiconductors ,Transmission electron microscopy ,Precession Diffraction ,Si ,Electron microscope ,0210 nano-technology ,business - Abstract
International audience; Precession electron diffraction has been used to provide accurate deformation maps of a device structure showing that this technique can provide a spatial resolution of better than 2 nm and a precision of better than 0.02%. The deformation maps have been fitted to simulations that account for thin specimen relaxation. By combining the experimental deformation maps and simulations, we have been able to separate the effects of the stressor and recessed sources and drains and show that the Si3N4 stressor increases the in-plane deformation in the silicon channel from 0.92 to 1.52 +/- 0.02%. In addition, the stress in the deposited Si3N4 film has been calculated from the simulations, which is an important parameter for device design.
- Published
- 2015
- Full Text
- View/download PDF
24. High-precision deformation mapping in finFET transistors with two nanometre spatial resolution by precession electron diffraction
- Author
-
Shogo Mochizuki, Nicolas Bernier, Yun-Yu Wang, David Cooper, Anita Madan, Jean-Luc Rouvière, Weihao Weng, and Hemanth Jagannathan
- Subjects
010302 applied physics ,Diffraction ,Materials science ,Physics and Astronomy (miscellaneous) ,business.industry ,Nanoscale Science and Technology ,02 engineering and technology ,Deformation (meteorology) ,Blanket ,021001 nanoscience & nanotechnology ,01 natural sciences ,Condensed Matter::Materials Science ,Optics ,0103 physical sciences ,Precession ,Precession electron diffraction ,Nanometre ,Wafer ,0210 nano-technology ,business ,Image resolution - Abstract
Precession electron diffraction has been used to systematically measure the deformation in Si/SiGe blanket films and patterned finFET test structures grown on silicon-on-insulator type wafers. Deformation maps have been obtained with a spatial resolution of 2.0 nm and a precision of ±0.025%. The measured deformation by precession diffraction for the blanket films has been validated by comparison to energy dispersive x-ray spectrometry, X-Ray diffraction, and finite element simulations. We show that although the blanket films remain biaxially strained, the patterned fin structures are fully relaxed in the crystallographic planes that have been investigated. We demonstrate that precession diffraction is a viable deformation mapping technique that can be used to provide useful studies of state-of-the-art electronic devices.
- Published
- 2017
25. High quality epitaxial fluorine-doped SnO2 films by ultrasonic spray pyrolysis: Structural and physical property investigation
- Author
-
Shan-Ting Zhang, Hervé Roussel, Daniel Bellet, Andreas Klein, Laetitia Rapenne, Vincent Consonni, Jean-Luc Rouvière, David Muñoz-Rojas, Etienne Pernot, Laboratoire des matériaux et du génie physique (LMGP ), Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
010302 applied physics ,Materials science ,Mechanical Engineering ,Doping ,Nanotechnology ,02 engineering and technology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Tin oxide ,Epitaxy ,01 natural sciences ,7. Clean energy ,Chemical engineering ,Mechanics of Materials ,Rutile ,0103 physical sciences ,lcsh:TA401-492 ,Precession electron diffraction ,lcsh:Materials of engineering and construction. Mechanics of materials ,General Materials Science ,Crystallite ,Thin film ,0210 nano-technology ,Molecular beam epitaxy - Abstract
International audience; • Epitaxial F-doped SnO2 (FTO) films are deposited on (110) rutile TiO2 for the first time using ultrasonic spray pyrolysis. • Epitaxial FTO film is of high structural quality with mosaic domains showing a narrow distribution of less than 0.5°. • Strain map at TiO2/FTO interface reveals the first 22 nm in FTO responsible for in-terfacial and secondary strain relaxation. Despite its wide use in the display and photovoltaic industries, fluorine-doped tin oxide (F:SnO 2 , FTO) has been studied only in its polycrystalline form. In this work, we report on the first growth of epitaxial FTO thin film by ultrasonic spray pyrolysis-a simple chemical deposition method-and we reveal the structure-property interplay by investigating in details its growth, morphology and strain/defects. Epitaxial FTO films are successfully grown on (110) rutile TiO 2 single crystals and form mosaic domains with an out-of-plane distribution smaller than 0.5°, showing high structural quality comparable to epitaxial films prepared by molecular beam epitaxy and pulsed-laser deposition. Owing to the large lattice mismatch with rutile TiO 2 , the FTO film develops significant structural defects to release the epitaxial strain and is consequently nearly fully relaxed with a slight residual strain of 0.1-0.2%. With the help of an innovative nano-beam precession electron diffraction technique, the strain distribution is mapped at the TiO 2 /FTO interface, from which we identify the interfacial and secondary strain relaxation taking place mainly in the first 22 nm in the FTO film. The Hall-mobility of the epitaxial FTO films is close to the state-of-the-art and expected to improve further at lower doping concentrations.
- Published
- 2017
- Full Text
- View/download PDF
26. Integration of III-V materials on (001)-Si substrate for optoelectronic and nanoelectronic applications
- Author
-
Tiphaine Cerba, Mickaël Martin, Jeremy Moeyaert, Sylvain David, Jean-Luc Rouvière, Laurent Cerutti, Reynald Alcotte, Jean-Baptiste Rodriguez, Hervé Boutry, Franck Bassani, Yann Bogumilowicz, Eric Tournié, Thierry Baron, Clot, Marielle, Laboratoire des technologies de la microélectronique (LTM ), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), NASA Goddard Space Flight Center (GSFC), Institut de Physique Nucléaire d'Orsay (IPNO), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut d’Electronique et des Systèmes (IES), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Composants à Nanostructure pour le moyen infrarouge (NANOMIR), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), and Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
- Subjects
[PHYS]Physics [physics] ,ComputingMilieux_MISCELLANEOUS ,[SPI.TRON]Engineering Sciences [physics]/Electronics ,[PHYS] Physics [physics] - Abstract
International audience
- Published
- 2017
27. The Measurement of Strain, Chemistry and Electric Fields by STEM based Techniques
- Author
-
Benedikt Haas, Nicolas Bernier, David K. C. Cooper, Michael G. Williamson, Eric Robin, and Jean-Luc Rouvière
- Subjects
010302 applied physics ,Chemical physics ,Chemistry ,Electric field ,0103 physical sciences ,Analytical chemistry ,02 engineering and technology ,021001 nanoscience & nanotechnology ,0210 nano-technology ,01 natural sciences ,Instrumentation - Published
- 2017
- Full Text
- View/download PDF
28. Growth and structural properties of step-graded, high Sn content GeSn layers on Ge
- Author
-
J. Aubin, David Cooper, Nicolas Mollard, Vincent Reboud, J.M. Hartmann, Vincent Delaye, Alban Gassenq, Vincent Calvo, Eric Robin, Jean-Luc Rouvière, robin, eric, Laboratoire des technologies de la microélectronique (LTM ), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Silicon Nanoelectronics Photonics and Structures (SiNaps), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), and Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
- Subjects
Diffraction ,Materials science ,[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Analytical chemistry ,Nanotechnology ,02 engineering and technology ,Epitaxy ,01 natural sciences ,chemistry.chemical_compound ,0103 physical sciences ,Materials Chemistry ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Electrical and Electronic Engineering ,Digermane ,ComputingMilieux_MISCELLANEOUS ,010302 applied physics ,Strain (chemistry) ,Precipitation (chemistry) ,Heterojunction ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,chemistry ,Transmission electron microscopy ,Torr ,0210 nano-technology - Abstract
Two approaches have been compared for the low temperature epitaxy of thick, partially relaxed GeSn layers on top of Ge strain relaxed buffers. The benefit of using step-graded instead of constant composition layers when targeting really high Sn contents (16%, here) was conclusively demonstrated. Digermane (Ge2H6) and tin-tetrachloride (SnCl4) were used as Ge and Sn precursors, respectively. The growth pressure (100 Torr) and the F(Ge2H6)/F(SnCl4) mass-flow ratio being constant, it was through a temperature lowering that the Sn concentration in the graded structure was increased. X-ray diffraction, atomic force microscopy and transmission electron microscopy were used to gain access to the Sn concentration, the strain state, the surface morphology and thicknesses of the heterostructures. Using a step-graded approach allowed us to gradually relax the strain in the GeSn layers. It helped us obtain high crystalline quality and avoid Sn segregation/precipitation for high Sn contents.
- Published
- 2017
29. Peak separation method for sub-lattice strain analysis at atomic resolution: Application to InAs/GaSb superlattice
- Author
-
Yifei Meng, Honggyu Kim, Jian-Min Zuo, Jean-Luc Rouvière, University of Illinois System, Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), University of Illinois at Urbana-Champaign [Urbana], Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
Diffraction ,Materials science ,Superlattice ,Analytical chemistry ,FOS: Physical sciences ,General Physics and Astronomy ,02 engineering and technology ,01 natural sciences ,Molecular physics ,Ion ,Lattice strain ,Structural Biology ,Atomic resolution ,0103 physical sciences ,General Materials Science ,ComputingMilieux_MISCELLANEOUS ,010302 applied physics ,[PHYS]Physics [physics] ,Condensed Matter - Materials Science ,Strain (chemistry) ,Materials Science (cond-mat.mtrl-sci) ,Cell Biology ,021001 nanoscience & nanotechnology ,Separation method ,0210 nano-technology ,Layer (electronics) - Abstract
We report on a direct measurement of cation and anion sub-lattice strain in an InAs/GaSb type-II strained layer superlattice (T2SLs) using atomic resolution Z-contrast imaging and advanced image processing. Atomic column positions in InAs and GaSb are determined by separating the cation and anion peak intensities. Analysis of the InAs/GaSb T2SLs reveals the compressive strain in the nominal GaSb layer and tensile strain at interfaces between constituent layers, which indicate In incorporation into the nominal GaSb layer and the formation of GaAs like interfaces, respectively. The results are compared with the model-dependent X-ray diffraction measurements in terms of interfacial chemical intermixing and strain. Together, these techniques provide a robust measurement of atomic-scale strain which is vital to determine T2SL properties., Comment: 15 pages, double spaced, 7 figures
- Published
- 2017
- Full Text
- View/download PDF
30. Strain Measurement with Nanometre Resolution by Transmission Electron Microscopy
- Author
-
David Cooper and Jean-Luc Rouvière
- Subjects
Materials science ,Silicon ,business.industry ,Scanning electron microscope ,General Engineering ,Holography ,chemistry.chemical_element ,Dark field microscopy ,Electron holography ,law.invention ,Optics ,Lattice constant ,Electron diffraction ,chemistry ,Transmission electron microscopy ,law ,business - Abstract
Strain is routinely used in state-of-the-art semiconductor devices in order to improve their electrical performance. Here we present experimental strain measurements obtained by different transmission electron microscopy (TEM) based techniques. Dark field electron holography, nanobeam electron diffraction (NBED) and high angle annular dark field scanning electron microscopy (HAADF STEM) are demonstrated. In this paper we demonstrate the spatial resolution and sensitivity of these different techniques on a simple calibration specimen where the accuracry of the measurement can easily be assessed. Introduction. Although the effects of introducing strain in semiconductor devices is well known from an electrical point of view, little is known about the distribution of strain. Indeed, it is only in the last few years that methods that can measure the strain with the required level of spatial resolution have been developed. Dark field electron holography (1), NBED (2) and HAADF STEM (3) are different TEM based techniques that have been developed in order to solve this problem. A calibration specimen was designed so that the different strain mapping techniques could be tested and compared to accurate simulations that would account for the relaxation of the thin TEM specimen. The calibration specimen that was examined was grown by reduced pressure chemical vapour deposition and comprised from top to bottom, a 150-nm-thick capping layer, then four 10- nm-thick SiGe layers with Ge concentrations of 45%, 38%, 31% and 20%, each separated by 30nm of silicon on a silicon substrate. As the growth is epitaxial, the lattice spacing in the in-plane (x- direction) does not change. However, in the growth (z-direction) the lattice parameter is expanded relative to the unstrained substrate due to the presence of Ge and it is this relative expansion which is measured. The dark holography experiments were performed using a probe corrected FEI Titan operated at 200 kV, the precession NBED (PED) and the HAADF STEM experiments were performed using a double corrected FEI Titan operated at 200 kV. All of the data was processed using software written at CEA.
- Published
- 2014
- Full Text
- View/download PDF
31. Strain measurement at the nanoscale: Comparison between convergent beam electron diffraction, nano-beam electron diffraction, high resolution imaging and dark field electron holography
- Author
-
Jean-Paul Barnes, David K. C. Cooper, Armand Béché, and Jean-Luc Rouvière
- Subjects
Conventional transmission electron microscope ,Materials science ,Reflection high-energy electron diffraction ,business.industry ,Resolution (electron density) ,Atomic and Molecular Physics, and Optics ,Electron holography ,Electronic, Optical and Magnetic Materials ,Chemistry ,Optics ,Electron diffraction ,Electron beam-induced deposition ,High-resolution transmission electron microscopy ,business ,Instrumentation ,Electron backscatter diffraction - Abstract
Convergent beam electron diffraction (CBED), nano-beam electron diffraction (NBED or NBD), high resolution imaging (HRTEM and HRSTEM) and dark field electron holography (DFEH or HoloDark) are five TEM based techniques able to quantitatively measure strain at the nanometer scale. In order to demonstrate the advantages and disadvantages of each technique, two samples composed of epitaxial silicon-germanium layers embedded in a silicon matrix have been investigated. The five techniques are then compared in terms of strain precision and accuracy, spatial resolution, field of view, mapping abilities and ease of performance and analysis. (C) 2013 Elsevier By. All rights reserved.
- Published
- 2013
- Full Text
- View/download PDF
32. Atomic structures of Si and Ge Σ = 13 [0 0 1] tilt grain boundaries studied by high-resolution electron microscopy and atomistic simulations
- Author
-
Olivier Hardouin Duparc, Jean-Luc Rouvière, and F. Lançon
- Subjects
Microscope ,Materials science ,Silicon ,chemistry.chemical_element ,Germanium ,Condensed Matter Physics ,Molecular physics ,law.invention ,Crystallography ,chemistry ,law ,Transmission electron microscopy ,Scanning transmission electron microscopy ,Perpendicular ,Grain boundary ,Electron microscope - Abstract
By combining high-resolution electron microscopy and atomistic simulations, the atomic structures of several interfaces, {5 1 0}, {2 3 0} and {8 1 0}/{7 4 0}, in germanium and in silicon Σ = 13 [0 0 1] tilt grain boundaries (TGBs) are studied using bicrystals prepared in two different ways from the melt. The interfaces are characterized by either transmission electron microscopy or scanning transmission electron microscopy (STEM). The Si TGB shows only one interface, {1 5 0} with one interfacial structure. The Ge TGB contains many facets. In Ge, observations performed in two perpendicular directions, [0 0 1] and [ 5 0], confirm that the {5 1 0} interface has two different structures. One structure, called M-structure, is periodic along [0 0 1] and has tetracoordinated atoms. The other structure, called U-structure, is more peculiar as it contains a fixed part surrounding a variable complex core. High-resolution STEM, realised in modern microscopes equipped with a probe Cs-corrector, is a very effective t...
- Published
- 2013
- Full Text
- View/download PDF
33. Picometre-precision atomic structure of inversion domain boundaries in GaN
- Author
-
Benedikt Haas, Robert A. McLeod, Thomas Auzelle, Bruno Daudin, Joël Eymery, Frédéric Lançon, Jian-Min Zuo, and Jean-Luc Rouvière
- Published
- 2016
- Full Text
- View/download PDF
34. In-situ propagation of a Cu phase in germanium nanowires observed by transmission electron microscopy
- Author
-
Khalil El Hajraoui, Clemens Zeiner, Eric Robin, Stéphanie Kodjikian, Alois Lugstein, Jean-Luc Rouvière, and Martien Den Hertog
- Published
- 2016
- Full Text
- View/download PDF
35. InGaN nanowires with high InN molar fraction: growth, structural and optical properties
- Author
-
Bruno Daudin, X. Biquard, Hugo Lourenço-Martins, Jean-Luc Rouvière, Xin Zhang, Benedikt Haas, T. Auzelle, Mathieu Kociak, Bruno Gayral, D. Jalabert, Pierre-Henri Jouneau, Catherine Bougerol, Sophie Meuret, Nanophysique et Semiconducteurs (NPSC), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de Physique des Solides (LPS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Nanostructures et Rayonnement Synchrotron (NRS ), ANR-11-LABX-0014,GANEX,Réseau national sur GaN(2011), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), and Nanophysique et Semiconducteurs (NEEL - NPSC)
- Subjects
Nanostructure ,Photoluminescence ,Materials science ,Annealing (metallurgy) ,Nanowire ,Bioengineering ,Nanotechnology ,02 engineering and technology ,Mole fraction ,Epitaxy ,01 natural sciences ,0103 physical sciences ,General Materials Science ,Electrical and Electronic Engineering ,010302 applied physics ,[PHYS]Physics [physics] ,InGaN ,business.industry ,Nanowires ,Mechanical Engineering ,Extended X-Ray Absorption Fine Structure ,Heterojunction ,General Chemistry ,021001 nanoscience & nanotechnology ,Mechanics of Materials ,Localization ,Optoelectronics ,Nano-Cathodoluminescence ,Molecular Beam Epitaxy ,0210 nano-technology ,business ,Molecular beam epitaxy ,Light-Emitting-Diodes - Abstract
International audience; The structural and optical properties of axial GaN/InGaN/GaN nanowire heterostructures with high InN molar fractions grown by molecular beam epitaxy have been studied at the nanoscale by a combination of electron microscopy, extended x-ray absorption fine structure and nanocathodoluminescence techniques. InN molar fractions up to 50% have been successfully incorporated without extended defects, as evidence of nanowire potentialities for practical device realisation in such a composition range. Taking advantage of the N-polarity of the self-nucleated GaN NWs grown by molecular beam epitaxy on Si(111), the N-polar InGaN stability temperature diagram has been experimentally determined and found to extend to a higher temperature than its metal-polar counterpart. Furthermore, annealing of GaN-capped InGaN NWs up to 800 degrees C has been found to result in a 20 times increase of photoluminescence intensity, which is assigned to point defect curing.
- Published
- 2016
- Full Text
- View/download PDF
36. Strain mapping of semiconductor specimens with nm-scale resolution in a transmission electron microscope
- Author
-
Armand Béché, Thibaud Denneulin, David Cooper, Nicolas Bernier, Jean-Luc Rouvière, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), European Project: 306535,EC:FP7:ERC,ERC-2012-StG_20111012,HOLOVIEW(2012), and Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
- Subjects
Diffraction ,Reflection high-energy electron diffraction ,Materials science ,Local-Structure ,Thin-Films ,General Physics and Astronomy ,State Analysis ,02 engineering and technology ,01 natural sciences ,Electron holography ,Optics ,Geometrical phase analysis ,Structural Biology ,0103 physical sciences ,Scanning transmission electron microscopy ,Imaging Conditions ,General Materials Science ,Geometric Phase-Analysis ,Nanobeam Diffraction ,010302 applied physics ,[PHYS]Physics [physics] ,business.industry ,Dark field electron holography ,Resolution (electron density) ,Cell Biology ,021001 nanoscience & nanotechnology ,Dark field microscopy ,Semiconductors ,Transmission electron microscopy ,Strain mapping ,0210 nano-technology ,business ,Electron backscatter diffraction ,Precession diffraction - Abstract
International audience; The last few years have seen a great deal of progress in the development of transmission electron microscopy based techniques for strain mapping. New techniques have appeared such as dark field electron holography and nanobeam diffraction and better known ones such as geometrical phase analysis have been improved by using aberration corrected ultra-stable modern electron microscopes. In this paper we apply dark field electron holography, the geometrical phase analysis of high angle annular dark field scanning transmission electron microscopy images, nanobeam diffraction and precession diffraction, all performed at the state-of-the-art to five different types of semiconductor samples. These include a simple calibration structure comprising 10-nm-thick SiGe layers to benchmark the techniques. A SiGe recessed source and drain device has been examined in order to test their capabilities on 2D structures. Devices that have.been strained using a nitride stressor have been examined to test the sensitivity of the different techniques when applied to systems containing low values of deformation. To test the techniques on modern semiconductors, an electrically tested device grown on a SOI wafer has been examined. Finally a GaN/AlN superlattice was tested in order to assess the different methods of measuring deformation on specimens that do not have a perfect crystalline structure. The different deformation mapping techniques have been compared to one another and the strengths and weaknesses of each are discussed. (C) 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
- Published
- 2016
- Full Text
- View/download PDF
37. Transport in TriGate nanowire FET: Cross-section effect at the nanometer scale
- Author
-
J. Pelloux-Prayer, S. Barraud, François Triozon, Zaiping Zeng, M. Casse, Jean-Luc Rouvière, G. Reimbold, Yann-Michel Niquet, Deutsch, Thierry, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratory of Atomistic Simulation (LSIM ), Modélisation et Exploration des Matériaux (MEM), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
010302 applied physics ,Electron mobility ,Materials science ,Phonon scattering ,Condensed matter physics ,Scattering ,Phonon ,Nanowire ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Temperature measurement ,[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,0103 physical sciences ,Surface roughness ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,0210 nano-technology ,Critical dimension ,ComputingMilieux_MISCELLANEOUS - Abstract
We hereby present a study of electron mobility in Tri-gate SOI Nanowire (TGNW) transistors in a wide range of temperature from 20K up to 425K. We compared the temperature dependence for different values of the NW cross-section (width and height) and different crystallographic orientations of the conduction channel. We demonstrate that the electron mobility in narrow TGNWs is limited by surface roughness in the sidewall inversion surface whatever the NW orientation [110]/(100) or [100]/(100). We have also evidenced an enhanced temperature dependence, attributed to phonon scattering, as the cross-section of the NW decreases below a critical dimension (≈80nm).
- Published
- 2016
38. Strain effect on mobility in nanowire MOSFETs down to 10 nm width: Geometrical effects and piezoresistive model
- Author
-
François Triozon, S. Barraud, M. Casse, G. Reimbold, Yann-Michel Niquet, Jean-Luc Rouvière, J. Pelloux-Prayer, O. Faynot, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Département Composants Silicium (DCOS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Laboratory of Atomistic Simulation (LSIM ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), and Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
- Subjects
Electron mobility ,Silicon ,Materials science ,Nanowire ,Silicon on insulator ,Nanotechnology ,02 engineering and technology ,01 natural sciences ,MOSFET ,0103 physical sciences ,Materials Chemistry ,Electron-Mobility ,Heterostructures ,Electrical and Electronic Engineering ,010302 applied physics ,[PHYS]Physics [physics] ,Strain (chemistry) ,business.industry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Thermal conduction ,Piezoresistive effect ,Aspect ratio (image) ,FDSOI ,Electronic, Optical and Magnetic Materials ,MultiGate ,Optoelectronics ,0210 nano-technology ,business - Abstract
International audience; The effect of strain on carrier mobility in triple gate Fully Depleted Silicon On Insulator (FDSOI) nanowires (NWs) is experimentally investigated through piezoresistance measurements. The piezoresitive coefficients have been extracted and analyzed for rectangular cross-section with varying aspect ratio (width vs. height). We propose an empirical model based on mobility separation between top and sidewall conduction surfaces of the NWs, and on the carrier density calculation in the cross-section of the NWs. The model allows fitting the piezoresistive coefficients and the carrier mobility for the different device geometries. We highlight an enhanced strain effect for Trigate nanowires with channel thickness below 11 nm. (C) 2016 Elsevier Ltd. All rights reserved.
- Published
- 2016
- Full Text
- View/download PDF
39. Depth strain profile with sub-nm resolution in a thin silicon film using medium energy ion scattering
- Author
-
Bruno Canut, D. Jalabert, D. Pelloux-Gervais, Patrice Gergaud, J.M. Hartmann, Jean-Luc Rouvière, and Armand Béché
- Subjects
Diffraction ,Materials science ,Silicon ,chemistry.chemical_element ,Germanium ,02 engineering and technology ,Substrate (electronics) ,01 natural sciences ,Optics ,0103 physical sciences ,Materials Chemistry ,Electrical and Electronic Engineering ,010302 applied physics ,business.industry ,Scattering ,fungi ,Heterojunction ,Surfaces and Interfaces ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Surface coating ,chemistry ,Electron diffraction ,Optoelectronics ,0210 nano-technology ,business - Abstract
The depth strain profile in silicon from the Si (001) substrate to the surface of a 2 nm thick Si/12 nm thick SiGe/bulk Si heterostructure has been determined by medium energy ion scattering (MEIS). It shows with sub-nanometer resolution and high strain sensitivity that the thin Si cap presents residual compressive strain caused by Ge diffusion coming from the fully strained SiGe layer underneath. The strain state of the SiGe buffer have been checked by X-ray diffraction (XRD) and nano-beam electron diffraction (NBED) measurements.
- Published
- 2011
- Full Text
- View/download PDF
40. Dark field electron holography for strain measurement
- Author
-
David Cooper, Jean-Paul Barnes, Armand Béché, and Jean-Luc Rouvière
- Subjects
Diffraction ,Conventional transmission electron microscope ,Materials science ,business.industry ,Resolution (electron density) ,Holography ,Physics::Optics ,Dark field microscopy ,Atomic and Molecular Physics, and Optics ,Electron holography ,Electronic, Optical and Magnetic Materials ,law.invention ,Condensed Matter::Materials Science ,Optics ,law ,Scanning transmission electron microscopy ,business ,Instrumentation ,Image resolution - Abstract
Dark field electron holography is a new TEM-based technique for measuring strain with nanometer scale resolution. Here we present the procedure to align a transmission electron microscope and obtain dark field holograms as well as the theoretical background necessary to reconstruct strain maps from holograms. A series of experimental parameters such as biprism voltage, sample thickness, exposure time, tilt angle and choice of diffracted beam are then investigated on a silicon-germanium layer epitaxially embedded in a silicon matrix in order to obtain optimal dark field holograms over a large field of view with good spatial resolution and strain sensitivity.
- Published
- 2011
- Full Text
- View/download PDF
41. Comprehension of peculiar local emission behavior of InGaAs quantum well by colocalized nanocharacterization combining cathodoluminescence and electron microscopy techniques
- Author
-
Nicolas Bernier, Georges Beainy, Joyce Roque, Jean-Luc Rouvière, Névine Rochat, Mickael Martin, J. Moeyaert, Sylvain David, Thierry Baron, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire des technologies de la microélectronique (LTM ), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
- Subjects
Materials science ,Silicon ,Band gap ,chemistry.chemical_element ,Cathodoluminescence ,02 engineering and technology ,Substrate (electronics) ,01 natural sciences ,0103 physical sciences ,Scanning transmission electron microscopy ,Materials Chemistry ,Metalorganic vapour phase epitaxy ,Electrical and Electronic Engineering ,Instrumentation ,Quantum well ,[PHYS]Physics [physics] ,010302 applied physics ,business.industry ,Process Chemistry and Technology ,021001 nanoscience & nanotechnology ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,chemistry ,Optoelectronics ,0210 nano-technology ,business ,Luminescence - Abstract
The electronic and structural properties of an In x Ga 1 − x As quantum well (QW) stacking between AlAs barriers grown on 300 mm (001) silicon substrate by metalorganic chemical vapor deposition were investigated. Nanometer scale and spatially colocalized characterization combining low temperature cathodoluminescence (CL) and scanning transmission electron microscopy was performed. The combined interpretation of luminescence and strain measurement provides an exhaustive landscape of such complex sample. Particularly, CL analysis highlights luminescent regions characterized by quasicircular shapes and a peculiar optical emission consisting of a double peak. The characterizations provide a comprehensive analysis of these specific luminescence features. These luminescent regions, detected all over the sample, seem to be correlated to local increases in carbon and indium content in AlAs barriers and in the InGaAs QW, respectively, induced by local strain variations. These modifications alter InGaAs QW properties and thus its optical emission efficiency.The electronic and structural properties of an In x Ga 1 − x As quantum well (QW) stacking between AlAs barriers grown on 300 mm (001) silicon substrate by metalorganic chemical vapor deposition were investigated. Nanometer scale and spatially colocalized characterization combining low temperature cathodoluminescence (CL) and scanning transmission electron microscopy was performed. The combined interpretation of luminescence and strain measurement provides an exhaustive landscape of such complex sample. Particularly, CL analysis highlights luminescent regions characterized by quasicircular shapes and a peculiar optical emission consisting of a double peak. The characterizations provide a comprehensive analysis of these specific luminescence features. These luminescent regions, detected all over the sample, seem to be correlated to local increases in carbon and indium content in AlAs barriers and in the InGaAs QW, respectively, induced by local strain variations. These modifications alter InGaAs QW...
- Published
- 2018
- Full Text
- View/download PDF
42. Quantitative evaluation of process induced strain in MOS transistors by Convergent Beam Electron Diffraction
- Author
-
Jean-Luc Rouvière, Roland Pantel, L. Clément, and F. Cacho
- Subjects
Materials science ,Ion beam ,business.industry ,Analytical chemistry ,General Physics and Astronomy ,Cell Biology ,Substrate (electronics) ,Stress (mechanics) ,Lamella (surface anatomy) ,Electron diffraction ,Structural Biology ,Transmission electron microscopy ,Stress relaxation ,Optoelectronics ,General Materials Science ,Wafer ,business - Abstract
Convergent Beam Electron Diffraction (CBED) experiments and simulations associated with Finite Element calculations were performed in order to measure strain and stress in a complex device such as periodic MOS transistors with a spatial resolution of about 2 nm and a sensitivity that could reach 50 MPa. A lamella of a thickness of about 475 nm was extracted from the wafer with the transistors by Focus Ion Beam (FIB) and was observed in cross-section in a Transmission Electron Microscope (TEM). When approaching the transistors, the HOLZ lines of the CBED patterns acquired in the silicon substrate, become broader and broader. This HOLZ line broadening, which is due to the stress relaxation in the thin foil, was used to determine quantitatively the strain and stress in the lamella and then in the bulk device. We showed that this procedure could be applied to a complex device. Two parameters, the intrinsic material strains – or equivalently the intrinsic material stresses – in the nickel silicide (NiSi) and nitride (Si 3 N 4 ) layers on the top of the transistors gate, were successfully fitted by trial and error, in the procedure.
- Published
- 2009
- Full Text
- View/download PDF
43. Alternate dissociation of the screw dislocations in a (0 0 1) buried small-angle twist boundary in silicon
- Author
-
Jean-Luc Rouvière, M. Loubradou, Roland Bonnet, F. Fournel, and Sami Youssef
- Subjects
Dislocation creep ,Silicon ,business.industry ,Close-packing of equal spheres ,chemistry.chemical_element ,Geometry ,Condensed Matter Physics ,Dark field microscopy ,Reciprocal lattice ,Optics ,chemistry ,Free surface ,Twist ,Dislocation ,business - Abstract
The square dislocation network of a (0 0 1) buried small-angle boundary in silicon was observed by dark-field transmission electron microscopy to examine the structures of more than 100 dissociated dislocation segments. Images were taken with g = (2 2 0), using a many-beam case along the reciprocal lattice row. Dissociation occurs on alternate close-packed planes without systematic rule, although a degree of ordering is taking place. Most of the dislocation segments have lengths equal to half of the square network period. Image simulation studies revealed that their experimental contrasts cannot be explained from the usual assumption of straight dislocations running in an infinite crystal. However, if these dislocations are supposed close and parallel to a nearby free surface, a reasonable agreement is found between the micrographs and the simulated images. A three-dimensional elastic model is proposed to explain the contrasts of the dislocation network.
- Published
- 2009
- Full Text
- View/download PDF
44. Odd electron diffraction patterns in silicon nanowires and silicon thin films explained by microtwins and nanotwins
- Author
-
Celine Mouchet, Jean-Luc Rouvière, Cyril Cayron, Emmanuelle Rouvière, Laurence Latu-Romain, M. den Hertog, C. Secouard, Jean-Pierre Simonato, Clot, Marielle, Laboratoire des technologies de la microélectronique (LTM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), and Université Joseph Fourier - Grenoble 1 (UJF)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Silicon ,Nanowire ,twinning ,chemistry.chemical_element ,artifacts ,02 engineering and technology ,01 natural sciences ,Electron beam physical vapor deposition ,General Biochemistry, Genetics and Molecular Biology ,0103 physical sciences ,Scanning transmission electron microscopy ,silicon thin films ,High-resolution transmission electron microscopy ,ComputingMilieux_MISCELLANEOUS ,010302 applied physics ,Condensed matter physics ,Hexagonal phase ,021001 nanoscience & nanotechnology ,Research Papers ,silicon nanowires ,Crystallography ,chemistry ,Electron diffraction ,Transmission electron microscopy ,0210 nano-technology - Abstract
Anomalous extra spots visible in electron diffraction patterns of silicon nanowires and silicon thin films are explained by the presence of micro- and nanotwins., Odd electron diffraction patterns (EDPs) have been obtained by transmission electron microscopy (TEM) on silicon nanowires grown via the vapour–liquid–solid method and on silicon thin films deposited by electron beam evaporation. Many explanations have been given in the past, without consensus among the scientific community: size artifacts, twinning artifacts or, more widely accepted, the existence of new hexagonal Si phases. In order to resolve this issue, the microstructures of Si nanowires and Si thin films have been characterized by TEM, high-resolution transmission electron microscopy (HRTEM) and high-resolution scanning transmission electron microscopy. Despite the differences in the geometries and elaboration processes, the EDPs of the materials show great similarities. The different hypotheses reported in the literature have been investigated. It was found that the positions of the diffraction spots in the EDPs could be reproduced by simulating a hexagonal structure with c/a = 12(2/3)1/2, but the intensities in many EDPs remained unexplained. Finally, it was established that all the experimental data, i.e. EDPs and HRTEM images, agree with a classical cubic silicon structure containing two microstructural defects: (i) overlapping Σ3 microtwins which induce extra spots by double diffraction, and (ii) nanotwins which induce extra spots as a result of streaking effects. It is concluded that there is no hexagonal phase in the Si nanowires and the Si thin films presented in this work.
- Published
- 2009
- Full Text
- View/download PDF
45. A new architecture for self-organized silicon nanowire growth integrated on a 〈100〉 silicon substrate
- Author
-
Pascal Gentile, Jean-Luc Rouvière, M. den Hertog, Denis Buttard, Thomas David, Pierre Ferret, and Thierry Baron
- Subjects
inorganic chemicals ,Materials science ,Silicon ,Nanowire ,chemistry.chemical_element ,Nanotechnology ,02 engineering and technology ,Substrate (electronics) ,complex mixtures ,01 natural sciences ,Colloid ,0103 physical sciences ,Materials Chemistry ,Perpendicular ,Electrical and Electronic Engineering ,010302 applied physics ,Nanoporous ,technology, industry, and agriculture ,Nanocrystalline silicon ,Surfaces and Interfaces ,equipment and supplies ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,chemistry ,Transmission electron microscopy ,0210 nano-technology - Abstract
A lithography-independent method for achieving self-organized growth of silicon nanowires by means of a Chemical-Vapor-Deposition process is investigated using a nanoporous alumina template on a 〈100〉 oriented silicon substrate. The position of the nanowires is determined by the location of gold colloids, acting as catalysts, which are initially deposited at the bottom of the pores over large areas of the sample. The direction of growth is guided by the pore axis, which is perpendicular to the silicon substrate surface. Results from scanning and transmission electron microscopy are presented and discussed. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
- Published
- 2008
- Full Text
- View/download PDF
46. Reduction of electrical damage in specimens prepared using focused ion beam milling for dopant profiling using off-axis electron holography
- Author
-
Robert Truche, Jean-Luc Rouvière, and David Cooper
- Subjects
Materials science ,Ion beam ,Dopant ,business.industry ,Analytical chemistry ,Focused ion beam ,Atomic and Molecular Physics, and Optics ,Electron holography ,Electronic, Optical and Magnetic Materials ,Ion beam deposition ,Cathode ray ,Optoelectronics ,Electron beam-induced deposition ,Ion milling machine ,business ,Instrumentation - Abstract
GaAs specimens containing p-n junctions have been prepared using focused ion beam (FIB) milling for examination using off-axis electron holography. By lowering the FIB operating voltage from 30 to 8 kV, we have shown a systematic reduction of the electrically 'inactive' thickness from 220 to 100 nm, resulting in a significant increase in the step in phase measured across the junctions as well as an improvement in the signal-to-noise ratio. We also show that the step in phase measured across the junctions can be influenced by the intensity of the electron beam.
- Published
- 2008
- Full Text
- View/download PDF
47. Strain effect on mobility in nanowire MOSFETs down to 10nm width: Geometrical effects and piezoresistive model
- Author
-
S. Barraud, Jean-Luc Rouvière, J. Pelloux-Prayer, G. Reimbold, Yann-Michel Niquet, François Triozon, O. Faynot, and M. Casse
- Subjects
Electron mobility ,Materials science ,Silicon ,Strain (chemistry) ,business.industry ,Nanowire ,Semiconductor device modeling ,chemistry.chemical_element ,Nanotechnology ,Piezoresistive effect ,Strain engineering ,chemistry ,Logic gate ,Optoelectronics ,business - Abstract
The effect of strain on carrier mobility in triple gate FDSOI nanowires is experimentally investigated through piezoresistance measurements. We propose an empirical model based on simple assumptions that allows fitting the piezoresistive coefficients as well as the carrier mobility for various device geometries. We highlight an enhanced strain effect for Trigate nanowires with channel height below 11nm.
- Published
- 2015
- Full Text
- View/download PDF
48. The influence of AlN buffer over the polarity and the nucleation of self-organized GaN nanowires
- Author
-
Jaime Colchero, Bruno Daudin, Albert Minj, Jean-Luc Rouvière, Benedikt Haas, Catherine Bougerol, Ana Cros, T. Auzelle, CEA Tech en régions (CEA-TECH-Reg), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Facultat de Fisica [València] (UV), Universitat de València (UV), Nanophysique et Semiconducteurs (NEEL - NPSC), Institut Néel (NEEL), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), Nanophysique et Semiconducteurs (NPSC), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)
- Subjects
010302 applied physics ,Coalescence (physics) ,[PHYS]Physics [physics] ,Materials science ,business.industry ,Nucleation ,Wide-bandgap semiconductor ,Nanowire ,General Physics and Astronomy ,Nanotechnology ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Buffer (optical fiber) ,Nanolithography ,0103 physical sciences ,Optoelectronics ,Crystallite ,Self-assembly ,0210 nano-technology ,business ,ComputingMilieux_MISCELLANEOUS - Abstract
We experimentally investigate the influence of AlN buffer growth on the nucleation and the polarity of a self-organized assembly of GaN nanowires (NWs) grown on Si. Two complementary growth mechanisms for AlN buffer deposited on Si are demonstrated. Both emphasize the aggregation of Si on the AlN surface and the growth of large cubic crystallites, namely, AlN pedestals. Further growths of GaN NWs assembly reveal that the GaN 2D layer found at the bottom of the NW assembly is the result of the coalescence of Ga-polar pyramids, whereas AlN pedestals are observed as preferential but not exclusive NW nucleation sites. NWs are N-polar or exhibit inversion domains with a Ga-polar core/N-polar shell structure. This suggests that N-polarity is a necessary condition to trigger NW self-organized nucleation due to a different facets energy hierarchy between the Ga- and the N-polar sides.
- Published
- 2015
- Full Text
- View/download PDF
49. Nanoscale strain distributions in embedded SiGe semiconductor devices revealed by precession electron diffraction and dual lens dark field electron holography
- Author
-
Nicolas Bernier, Conal E. Murray, Yun-Yu Wang, David Cooper, John Bruley, Jean-Luc Rouvière, IBM, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), IBM Watson Research Center, Yorktown Heights, New York, IBM T. J. Watson Research Centre, and Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
- Subjects
Length scale ,Diffraction ,[PHYS]Physics [physics] ,Materials science ,Reflection high-energy electron diffraction ,Physics and Astronomy (miscellaneous) ,Condensed matter physics ,business.industry ,Electron ,Dark field microscopy ,Electron holography ,Optics ,Electron diffraction ,Precession electron diffraction ,business - Abstract
International audience; The detailed strain distributions produced by embedded SiGe stressor structures are measured at high spatial resolution with high precision, with dual lens dark field electron holography and precession electron diffraction. Shear strain and lattice rotation within the crystalline lattice are observed at the boundaries between the SiGe and Si regions. The experimental results are compared to micromechanical modeling simulations to understand the mechanisms of elastic relaxation on all the modes of deformation at a sub-micron length scale. (C) 2015 AIP Publishing LLC.
- Published
- 2015
- Full Text
- View/download PDF
50. Ordered growth of germanium dots induced by the strain field of tilt dislocations in molecular bonded silicon (001) thin films
- Author
-
R. Dujardin, V. Poydenot, A. Barski, Jean-Luc Rouvière, F. Fournel, and J. Mezière
- Subjects
Materials science ,Nanostructure ,Silicon ,Condensed matter physics ,chemistry.chemical_element ,Germanium ,Surfaces and Interfaces ,Edge (geometry) ,Condensed Matter Physics ,Surfaces, Coatings and Films ,Condensed Matter::Materials Science ,Crystallography ,Tilt (optics) ,chemistry ,Materials Chemistry ,Thin film ,Dislocation ,Molecular beam epitaxy - Abstract
Germanium dots have been grown on high twist angle (twist angle as high as 20°) molecular bonded silicon (0 0 1) substrates. We show that, depending on the thickness of the silicon film, the strain field generated by an ordered array of mixed edge interfacial tilt (miss-cut) dislocations may induce an ordered growth of germanium dots. We also show that in order to observe an influence of the mixed edge interfacial dislocations on the growth of germanium dots, the thickness of the film has to be much lower that the period of the mixed edge dislocations array. Germanium dots grown by molecular beam epitaxy on 10–15 nm thick silicon films with the period of tilt dislocation array of 43 nm show a high degree of self-ordering.
- Published
- 2006
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.