Jan Scholten, Olaf Dellwig, Mary Zeller, Bo Liu, Svenja Papenmeier, Christoph Malik, Catia Milene Ehlert von Ahn, Anna-Kathrina Jenner, Peter Feldens, Iris Schmiedinger, and Michael E. Böttcher
Submarine groundwater discharge (SGD) acts as a source of fresh water and dissolved substances for coastal ecosystems. Evaluation of the actual controls on SGD and corresponding chemical fluxes require a closer understanding of the processes that take place in the mixing zone between SGD and the coastal waters. It is hypothesized that artificial infrastructures, like sediment channeling, may ease the hydrological connection between coastal aquifer and coastal bottom water. The resultant, increase of SGD, changes the residence time in the mixing zone, and thereby, reduces the impact of early diagenesis. The present study focuses on the distribution of SGD, including the characterization of different mixing zones in the urbanized Wismar Bay (WB), southern Baltic Sea. Short sediment cores were retrieved for geochemical porewaters and sediment analyses. Surface sea water samples were collected along across-shore transects in the WB. Besides major ions, Ba, Fe, and Mn, the water samples were analyzed for nutrients, dissolved inorganic carbon (DIC), stable isotopes (H, O, C, S), and Ra isotopes. Sediments were analyzed for C, N, S, Hg contents as well as reactive components (e.g. Fe, Mn, P) by HCl extractions. Organic matter mineralization rates, DIC, and SO4 fluxes for the sediment-water interface were modeled from porewater profiles. Shallow seismic techniques were applied to identify potential litho-morphological controls on SGD. Geochemical porewater data allow identification of active SGD sites in the WB. In the central part, the freshening of porewaters in the top surface sediments indicates the upward flow of SGD originating from a coastal aquifer. The acoustic profiles show that the bottom sediments in the central bay are under local impact of excavation, reducing the sediment thickness above the coastal aquifer. Overall, the impact of SGD on the coastal water body of the WB is diffuse and promoted by local anthropogenic activity. The water isotope composition of porewaters at this site are close to the local meteoric water line at Warnemünde (located 50 km east of the WB), suggesting a discharge of relatively modern fresh waters. The (isotope) hydrochemical composition of the fresh water discharging is controlled by water-rock interactions in the aquifer and modulated by intense diagenesis in the brackish surface sediments. Furthermore, the SGD facilitates the upward migration of elements and enhances their fluxes across the sediment-water interface, e.g. DIC concentrations in the fresh groundwater are further enhanced in the mixing zone, indicating that SGD is a potential source of excess CO2 in the investigated coastal waters.The investigations are supported by the DAAD, DFG RTS Baltic TRANSCOAST, KiSnet project, BONUS SEAMOUNT, FP7 EU Marie Curie career integration grant, DAM-MFG, and IOW.