Sophie E. Smart, Deborah Agbedjro, Antonio F. Pardiñas, Olesya Ajnakina, Luis Alameda, Ole A. Andreassen, Thomas R.E. Barnes, Domenico Berardi, Sara Camporesi, Martine Cleusix, Philippe Conus, Benedicto Crespo-Facorro, Giuseppe D'Andrea, Arsime Demjaha, Marta Di Forti, Kim Do, Gillian Doody, Chin B. Eap, Aziz Ferchiou, Lorenzo Guidi, Lina Homman, Raoul Jenni, Eileen Joyce, Laura Kassoumeri, Ornella Lastrina, Ingrid Melle, Craig Morgan, Francis A. O'Neill, Baptiste Pignon, Romeo Restellini, Jean-Romain Richard, Carmen Simonsen, Filip Španiel, Andrei Szöke, Ilaria Tarricone, Andrea Tortelli, Alp Üçok, Javier Vázquez-Bourgon, Robin M. Murray, James T.R. Walters, Daniel Stahl, James H. MacCabe, and Universidad de Cantabria
Introduction Our aim was to, firstly, identify characteristics at first-episode of psychosis that are associated with later antipsychotic treatment resistance (TR) and, secondly, to develop a parsimonious prediction model for TR. Methods We combined data from ten prospective, first-episode psychosis cohorts from across Europe and categorised patients as TR or non-treatment resistant (NTR) after a mean follow up of 4.18 years (s.d. = 3.20) for secondary data analysis. We identified a list of potential predictors from clinical and demographic data recorded at first-episode. These potential predictors were entered in two models: a multivariable logistic regression to identify which were independently associated with TR and a penalised logistic regression, which performed variable selection, to produce a parsimonious prediction model. This model was internally validated using a 5-fold, 50-repeat cross-validation optimism-correction. Results Our sample consisted of N = 2216 participants of which 385 (17 %) developed TR. Younger age of psychosis onset and fewer years in education were independently associated with increased odds of developing TR. The prediction model selected 7 out of 17 variables that, when combined, could quantify the risk of being TR better than chance. These included age of onset, years in education, gender, BMI, relationship status, alcohol use, and positive symptoms. The optimism-corrected area under the curve was 0.59 (accuracy = 64 %, sensitivity = 48 %, and specificity = 76 %). Implications Our findings show that treatment resistance can be predicted, at first-episode of psychosis. Pending a model update and external validation, we demonstrate the potential value of prediction models for TR. Funding: This work was supported by a Stratified Medicine Programme grant to JHM from the Medical Research Council (grant number MR/L011794/1 which funded the research and supported S.E.S., D.A., A.F.P, L.K., R.M.M., D.S., J.T.R.W, & J.H.M.); funding from the National Institute for Health Research Biomedical Research Centre at South London and Maudsley National Health Service Foundation Trust and King's College London to D.A. and D.S; and funding from the Collaboration for Leadership in Applied Health Research and Care (CLAHRC) South London at King's College Hospital National Health Service Foundation Trust to S.E.S. The views expressed are those of the author(s) and not necessarily those of the Medical Research Council, National Health Service, the National Institute for Health Research, or the Department of Health. The AESOP (London, UK) cohort was funded by the UK Medical Research Council (Ref: G0500817). The Belfast (UK) cohort was funded by the Research and Development Office of Northern Ireland. The Bologna (Italy) cohort was funded by the European Community's Seventh Framework Program under grant agreement (agreement No.HEALTH-F2-2010–241909, Project EU-GEI). The GAP (London, UK) cohort was funded by the UK National Institute of Health Research(NIHR) Specialist Biomedical Research Centre for Mental Health, South London and Maudsley NHS Mental Health Foundation Trust (SLaM) and the Institute of Psychiatry, Psychology, and Neuroscience at King's College London; Psychiatry Research Trust; Maudsley Charity Research Fund; and the European Community's Seventh Framework Program grant (agreement No. HEALTH-F2-2009-241909, Project EU-GEI). The Lausanne (Switzerland) cohort was funded by the Swiss National Science Foundation (no. 320030_135736/1 to P.C. and K.Q.D., no 320030-120686, 324730-144064 and 320030-173211 to C.B.E and P.C., and no 171804 to LA); National Center of Competence in Research (NCCR) “SYNAPSY - The Synaptic Bases of Mental Diseases” from the Swiss National Science Foundation (no 51AU40_125759 to PC and KQD); and Fondation Alamaya (to KQD). The Oslo (Norway) cohort was funded by the Research Council of Norway (#223273/F50, under the Centers of Excellence funding scheme, #300309, #283798) and the South-Eastern Norway Regional Health Authority (#2006233, #2006258, #2011085, #2014102, #2015088 to IM, #2017-112). The Paris (France) cohort was funded by European Community's Seventh Framework Program grant (agreement No. HEALTH-F2-2010–241909, Project EU-GEI). The Prague (Czech Republic) cohort was funded by the Ministry of Health of the Czech Republic (Grant Number: NU20-04-00393). The Santander (Spain) cohort was funded by the following grants (to B.C.F): Instituto de Salud Carlos III, FIS 00/3095, PI020499, PI050427, PI060507, Plan Nacional de Drogas Research Grant 2005-Orden sco/3246/2004, and SENY Fundatio Research Grant CI 2005-0308007, Fundacion Marques de Valdecilla A/02/07 and API07/011. SAF2016-76046-R and SAF2013-46292-R (MINECO and FEDER). The West London (UK) cohort was funded The Wellcome Trust (Grant Number: 042025; 052247; 064607).