1. Development and Validation of a Simple High-Pressure Liquid Chromatography-Ultraviolet Detection Method for Simultaneous Quantitation of First-Line Anti-Tuberculosis Drugs in Formulations of Fixed-Dose Combination.
- Author
-
Vilvamani S, Mahalingam S, Nhavilthodi S, Murugesan D, and Jeyakumar SM
- Subjects
- Chromatography, High Pressure Liquid methods, Reproducibility of Results, Pyrazinamide analysis, Tablets, Ethambutol analysis, Rifampin analysis, Isoniazid analysis, Isoniazid chemistry, Spectrophotometry, Ultraviolet methods, Linear Models, Limit of Detection, Antitubercular Agents analysis, Drug Combinations
- Abstract
The current treatment protocol for drug-sensitive tuberculosis involves all four first-line anti-tuberculosis drugs: rifampicin, isoniazid, pyrazinamide and ethambutol hydrochloride in a single tablet, known as fixed-dose combination tablets. However, the analytical methods are scanty to test all these drugs simultaneously in a single run without any pre-sample process or using a simple method suitable for resource-limited settings. In this method, 50 mM potassium phosphate buffer containing 0.2% triethylamine (without pH adjustment) added with acetonitrile (98:2, v/v) was served as mobile phase A, while mobile phase B was 100% acetonitrile. All four drugs were separated within 10.3 min using a gradient mobile phase program in a C18 column (150 mm × 4.6 mm; 5 μm) and detected at two ultraviolet wavelengths (238 nm for rifampicin, isoniazid and pyrazinamide, and 210 nm for ethambutol hydrochloride). The method was selective, sensitive and linear with a correlation coefficient >0.999 with the acceptable precision and accuracy (<2% relative standard deviation) for all four drugs. In conclusion, the method is simple and it does not require any pH adjustment of the buffer/mobile phase, and within 11 min, the separation of all four drugs can be achieved. Overall, the method is suitable for quality testing of fixed-dose combination tablets in limited-resource settings., (© The Author(s) 2024. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF