Matthias Hirsch-Hoffmann, Ronan Sulpice, Sabine Kahlau, Catherine Massonnet, Amandine Radziejwoski, Christine Granier, Daniel J. Stekhoven, Nathalie Wuyts, Doris Russenberger, Sacha Baginsky, Lars Hennig, Pierre Hilson, Sean Walsh, Katharine A. Howell, Dorothea Rutishauser, Julia Svozil, Katja Baerenfaller, Ian Small, Mark Stitt, Wilhelm Gruissem, Peter Bühlmann, Department of Biology, Écophysiologie des Plantes sous Stress environnementaux (LEPSE), Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Seminar for Statistics [ETH Zürich] (SfS), Department of Mathematics [ETH Zurich] (D-MATH), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)- Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences (SLU), Plant Energy Biology, ARC Centre of Excellence, The University of Western Australia (UWA), Max Planck Institute of Molecular Plant Physiology (MPI-MP), Max-Planck-Gesellschaft, Department of Plant Systems Biology, Flanders Institute for Biotechnology, Functional Genomics Center Zurich, Universität Zürich [Zürich] = University of Zurich (UZH), Competence Center for Systems Physiology and Metabolic Diseases, Departement of Plant Systems Biology, Department of Plant Biotechnology and Bioinformatics, Universiteit Gent = Ghent University [Belgium] (UGENT), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich)-Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich), Universität Zürich [Zürich] (UZH), Ghent University [Belgium] (UGENT), Baerenfaller, K., Massonnet, Catherine, Walsh, S., Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro), UCL - SST/ELI - Earth and Life Institute, University of Zurich, and Baerenfaller, Katja
Deep profiling of the transcriptome and proteome during leaf development reveals unexpected responses to water deficit, as well as a surprising lack of protein-level fluctuations during the day–night cycle, despite clear changes at the transcript level., Transcript and protein variation patterns reflect the functional stages of the leaf. Protein and transcript levels correlate well during leaf development, with some notable exceptions. Diurnal transcript-level fluctuations are not matched by corresponding diurnal fluctuations in the detected proteome. Continuous reduced soil water content results in reduced leaf growth, but the plant adapts at molecular levels without showing a typical drought response., Leaves have a central role in plant energy capture and carbon conversion and therefore must continuously adapt their development to prevailing environmental conditions. To reveal the dynamic systems behaviour of leaf development, we profiled Arabidopsis leaf number six in depth at four different growth stages, at both the end-of-day and end-of-night, in plants growing in two controlled experimental conditions: short-day conditions with optimal soil water content and constant reduced soil water conditions. We found that the lower soil water potential led to reduced, but prolonged, growth and an adaptation at the molecular level without a drought stress response. Clustering of the protein and transcript data using a decision tree revealed different patterns in abundance changes across the growth stages and between end-of-day and end-of-night that are linked to specific biological functions. Correlations between protein and transcript levels depend on the time-of-day and also on protein localisation and function. Surprisingly, only very few of >1700 quantified proteins showed diurnal abundance fluctuations, despite strong fluctuations at the transcript level.