Back to Search Start Over

Summary report of the 4th IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis (FDPVA)

Authors :
S.M. Gonzalez de Vicente
D. Mazon
M. Xu
S. Pinches
M. Churchill
A. Dinklage
R. Fischer
A. Murari
P. Rodriguez-Fernandez
J. Stillerman
J. Vega
G. Verdoolaege
Source :
Nuclear Fusion, Vol 63, Iss 4, p 047001 (2023)
Publication Year :
2023
Publisher :
IOP Publishing, 2023.

Abstract

The objective of the Fourth Technical Meeting on Fusion Data Processing, Validation and Analysis was to provide a platform during which a set of topics relevant to fusion data processing, validation and analysis are discussed with the view of extrapolating needs to next step fusion devices such as ITER. The validation and analysis of experimental data obtained from diagnostics used to characterize fusion plasmas are crucial for a knowledge-based understanding of the physical processes governing the dynamics of these plasmas. This paper presents the recent progress and achievements in the domain of plasma diagnostics and synthetic diagnostics data analysis (including image processing, regression analysis, inverse problems, deep learning, machine learning, big data and physics-based models for control) reported at the meeting. The progress in these areas highlight trends observed in current major fusion confinement devices. A special focus is dedicated on data analysis requirements for ITER and DEMO with a particular attention paid to artificial intelligence for automatization and improving reliability of control processes.

Details

Language :
English
ISSN :
17414326 and 00295515
Volume :
63
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Nuclear Fusion
Publication Type :
Academic Journal
Accession number :
edsdoj.258c5766952c4588a15b784d1742d273
Document Type :
article
Full Text :
https://doi.org/10.1088/1741-4326/acbfce