1. A Sparse Reconstruction Framework for Fourier-Based Plane-Wave Imaging
- Author
-
Francois Varray, Yves Wiaux, Adrien Besson, Jean-Philippe Thiran, Denis Friboulet, Herve Liebgott, Miaomiao Zhang, Rafael E. Carrillo, Olivier Bernard, Heriot-Watt University [Edinburgh] ( HWU ), 2 - Images et Modèles, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé ( CREATIS ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Hospices Civils de Lyon ( HCL ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Hospices Civils de Lyon ( HCL ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), 3 - Imagerie Ultrasonore, Signal Processing Laboratory [Lausanne] ( LTS5 ), Ecole Polytechnique Fédérale de Lausanne ( EPFL ), Heriot-Watt University [Edinburgh] (HWU), Images et Modèles, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Imagerie Ultrasonore, Signal Processing Laboratory [Lausanne] (LTS5), and Ecole Polytechnique Fédérale de Lausanne (EPFL)
- Subjects
Inverse problems ,Point spread function ,Acoustics and Ultrasonics ,[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging ,Image quality ,Computer science ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Image registration ,[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing ,Iterative reconstruction ,01 natural sciences ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,symbols.namesake ,Magnetic resonance imaging ,0302 clinical medicine ,0103 physical sciences ,Image Processing, Computer-Assisted ,Electronic engineering ,Electrical and Electronic Engineering ,010301 acoustics ,Instrumentation ,[ SDV.IB.IMA ] Life Sciences [q-bio]/Bioengineering/Imaging ,Ultrasonography ,[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,Fourier Analysis ,[ SPI.ACOU ] Engineering Sciences [physics]/Acoustics [physics.class-ph] ,Phantoms, Imaging ,Two dimensional displays ,Signal Processing, Computer-Assisted ,k-space ,Sparse approximation ,Models, Theoretical ,Fourier transform ,Compressed sensing ,Computer Science::Computer Vision and Pattern Recognition ,Image reconstruction ,Array signal processing ,symbols ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,Algorithm - Abstract
International audience; Ultrafast imaging based on plane-wave (PW) insonification is an active area of research due to its capability of reaching high frame rates. Among PW imaging methods, Fourier-based approaches have demonstrated to be competitive compared with traditional delay and sum methods. Motivated by the success of compressed sensing techniques in other Fourier imaging modalities, like magnetic resonance imaging, we propose a new sparse regularization framework to reconstruct high-quality ultrasound (US) images. The framework takes advantage of both the ability to formulate the imaging inverse problem in the Fourier domain and the sparsity of US images in a sparsifying domain. We show, by means of simulations, in vitro and in vivo data, that the proposed framework significantly reduces image artifacts, i.e., measurement noise and sidelobes, compared with classical methods, leading to an increase of the image quality.
- Published
- 2016