Back to Search Start Over

Accelerating Plane Wave Imaging through Deep Learning-Based Reconstruction: An Experimental Study

Authors :
Maxime Gasse
Fabien Millioz
Emmanuel Roux
Hervé Liebgott
Denis Friboulet
Images et Modèles
Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS)
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Department of Information Engineering [Firenze]
Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI)
Imagerie Ultrasonore
ANR-11-LABX-0063,PRIMES,Physique, Radiobiologie, Imagerie Médicale et Simulation(2011)
2 - Images et Modèles
Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé ( CREATIS )
Hospices Civils de Lyon ( HCL ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Claude Bernard Lyon 1 ( UCBL )
Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon ( INSA Lyon )
Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Hospices Civils de Lyon ( HCL ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Claude Bernard Lyon 1 ( UCBL )
Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA )
Università degli Studi di Firenze [Firenze]
3 - Imagerie Ultrasonore
ANR-11-IDEX-0007-02/11-LABX-0063,PRIMES,Physique, Radiobiologie, Imagerie Médicale et Simulation ( 2011 )
Source :
2017 IEEE International Ultrasonic Symposium (IUS), 2017 IEEE International Ultrasonic Symposium (IUS), Sep 2017, Washington, United States, 2017 IEEE International Ultrasonic Symposium (IUS), Sep 2017, Washington, United States. 2017, HAL
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

International audience; Background, Motivation and ObjectiveObtaining ultrafast images using steered plane wave (PW) imaging remains a challenge due to the trade-off between image quality and frame rate. PW imaging indeed relies on compounding in order to preserve a good image quality, usually using multiple successive emissions, which in turn yields a decrease of the frame rate. As opposed to this classicalapproach, we propose a new strategy to reduce the number of emitted PWs. This is done using a deep learning technique, i.e. by training a convolutional neural network (CNN) to reconstruct high quality images using a small number of PW emissions (typically two).Statement of Contribution/MethodsThe training data was generated as follows. A standard linear array probe (ATL L7-4 38 mm, 128 elements, bandwidth 4-7 MHz, transmitted frequency 5.208 MHz) was interfaced with a Verasonics system. 31 PWs were emitted (angle spanning ±15° in one degree steps). For each PW emission, the received raw-data was then processed using the f-k migration method [Garcia et al. IEEE UFFC13] to produce the reconstructed RF image. These 31 images were then averaged to get the final compounded image used as a reference in the training process, while only two images corresponding to angles -10° and +10° were given as input to the CNN.A total of 2000 reference images were acquired, 1000 images from in-vivo tissues (carotid and thyroid), 500 images from a Gammex phantom (410 SCG), and 500 images from a water-based polyamide mixture with air bubbles. 1800 images were used for training, 100 for validation, and 100 for testing. The CNN employed in this study is a fully-convolutionalneural network, with 4 hidden layers and maxout activation units. Training is done via stochastic gradient descent and the minimized loss function is the mean absolute error (MAE) between the CNN-reconstructed and the reference RF image, plus a L2 regularization term.Results/DiscussionOur approach was evaluated by comparing the CNN-based reconstruction of the test images with the conventional compounding method (see Fig. 1). Preliminary results indicate that CNN-based reconstruction is a very promising approach, as the reconstructed images are visually very close to those obtained by standard compounding with 31 PWs, while implying the emission of only 2 PWs.

Details

Language :
English
Database :
OpenAIRE
Journal :
2017 IEEE International Ultrasonic Symposium (IUS), 2017 IEEE International Ultrasonic Symposium (IUS), Sep 2017, Washington, United States, 2017 IEEE International Ultrasonic Symposium (IUS), Sep 2017, Washington, United States. 2017, HAL
Accession number :
edsair.dedup.wf.001..b8c635c4a3e6971fdfabef11dcdc00d2