Cecilia Lira Melo de Oliveira Santos, Stéphane Dupuy, Guerric Le Maire, Julie Boury, Ricardo da Silva Torres, Ana Cláudia dos Santos Luciano, Gleyce Kelly Dantas Araújo Figueiredo, Rubens Augusto Camargo Lamparelli, Universidade Estadual de Campinas = University of Campinas (UNICAMP), Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS), Département Environnements et Sociétés (Cirad-ES), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), AgroParisTech, Centro Nacional de Pesquisa em Energia e Materiais = Brazilian Center for Research in Energy and Materials (CNPEM), Institute of Computing [Campinas] (IC), Ecologie fonctionnelle et biogéochimie des sols et des agro-écosystèmes (UMR Eco&Sols), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Département Performances des systèmes de production et de transformation tropicaux (Cirad-PERSYST), he Brazilian Research Council CNPq (Conselho Nacional do Desenvolvimento Científico e Tecnológico—grant n° 454292/2014-7, n° 307560/2016-3), Coordenação de Aperfeiçoamento de Pesssoal de Nível Superior- Brazil- Finance Code 001 (CAPES), the project 'Characterizing and Predicting Biomass Production in Sugarcane and Eucalyptus Plantations in Brazil' of the Fundação de Amparo à Pesquisa do Estado de Sao Paulo, (FAPESP-Microsoft Research n° 2014/50715-9), Fundação de Amparo à Pesquisa do Estado de Sao Paulo (grants #2015/24494-8, #2014/12236-1, and #2013/50155-0), the CES-OSO project (TOSCA program Grant of the French Space Agency, CNES), SPOT images were acquired through the GEOSUD Program (ANR-10-EQPX-20 by French National Research Agency)., ANR-10-EQPX-0020,GEOSUD,GEOSUD : Infrastructure nationale d'imagerie satellitaire pour la recherche sur l'environnement et les territoires et ses applications à la gestion et aux politiques publiques(2010), European Project: 603719,EC:FP7:ENV,FP7-ENV-2013-two-stage,SIGMA(2013), Universidade Estadual de Campinas (UNICAMP), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Institute of Computing [Campinas] (UNICAMP), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)
International audience; Timely and efficient land-cover mapping is of high interest, especially in agricultural landscapes. Classification based on satellite images over the season, while important for cropland monitoring, remains challenging in subtropical agricultural areas due to the high diversity of management systems and seasonal cloud cover variations. This work presents supervised object-based classifications over the year at 2-month time-steps in a heterogeneous region of 12,000 km(2) in the Sao Paulo region of Brazil. Different methods and remote-sensing datasets were tested with the random forest algorithm, including optical and radar data, time series of images, and cloud gap-filling methods. The final selected method demonstrated an overall accuracy of approximately 0.84, which was stable throughout the year, at the more detailed level of classification; confusion mainly occurred among annual crop classes and soil classes. We showed in this study that the use of time series was useful in this context, mainly by including a small number of highly discriminant images. Such important images were eventually distant in time from the prediction date, and they corresponded to a high-quality image with low cloud cover. Consequently, the final classification accuracy was not sensitive to the cloud gap-filling method, and simple median gap-filling or linear interpolations with time were sufficient. Sentinel-1 images did not improve the classification results in this context. For within-season dynamic classes, such as annual crops, which were more difficult to classify, field measurement efforts should be densified and planned during the most discriminant window, which may not occur during the crop vegetation peak.