Back to Search Start Over

A novel approach for mapping wheat areas using high resolution Sentinel-2 images

Authors :
T. Darwish
Hatem Belhouchette
Mario Mhawej
Ghaleb Faour
Nicolas Baghdadi
Salem Darwich
Ali Nasrallah
Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)
National Center For Remote Sensing [Beirut]
National Council for Scientific Research [Lebanon] (CNRS-L)
Centre International de Hautes Etudes Agronomiques Méditerranéennes - Institut Agronomique Méditerranéen de Montpellier (CIHEAM-IAMM)
Centre International de Hautes Études Agronomiques Méditerranéennes (CIHEAM)
Fonctionnement et conduite des systèmes de culture tropicaux et méditerranéens (UMR SYSTEM)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre International de Hautes Etudes Agronomiques Méditerranéennes - Institut Agronomique Méditerranéen de Montpellier (CIHEAM-IAMM)
Centre International de Hautes Études Agronomiques Méditerranéennes (CIHEAM)-Centre International de Hautes Études Agronomiques Méditerranéennes (CIHEAM)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
Université Libanaise
Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)
National Center For Remote Sensing [CNRS-L]
National Council for Scientific Research = Conseil national de la recherche scientifique du Liban [Lebanon] (CNRS-L)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Centre International de Hautes Etudes Agronomiques Méditerranéennes - Institut Agronomique Méditerranéen de Montpellier (CIHEAM-IAMM)
Centre International de Hautes Études Agronomiques Méditerranéennes (CIHEAM)-Centre International de Hautes Études Agronomiques Méditerranéennes (CIHEAM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
Source :
Sensors, Sensors, MDPI, 2018, 18 (7), pp.1-23. ⟨10.3390/s18072089⟩, Sensors (Basel, Switzerland), Sensors, Vol 18, Iss 7, p 2089 (2018), Volume 18, Issue 7
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

Global wheat production reached 754.8 million tons in 2017, according to the FAO database. While wheat is considered as a staple food for many populations across the globe, mapping wheat could be an effective tool to achieve the SDG2 sustainable development goal&mdash<br />End Hunger and Secure Food Security. In Lebanon, this crop is supported financially, and sometimes technically, by the Lebanese government. However, there is a lack of statistical databases, at both national and regional scales, as well as critical information much needed in the subsidy and compensation system. In this context, this study proposes an innovative approach, named Simple and Effective Wheat Mapping Approach (SEWMA), to map the winter wheat areas grown in the Bekaa plain, the primary wheat production area in Lebanon, in the years of 2016 and 2017. The proposed methodology is a tree-like approach relying on the Normalized Difference Vegetation Index (NDVI) values of four-month period that coincides with several phenological stages of wheat (i.e., tillering, stem extension, heading, flowering and ripening). The usage of the freely available Sentinel-2 imageries, with a high spatial (10 m) and temporal (5 days) resolutions, was necessary, particularly due to the small sized and overlapped plots encountered in the study area. Concerning the wheat areas, results show that there was a decrease from 11,063 &plusmn<br />1309 ha in 2016 to 7605 &plusmn<br />1184 in 2017. When SEWMA was applied using 2016 ground truth data, the overall accuracy reached 87.0% on 2017 data, whereas, when implemented using 2017 ground truth data, the overall accuracy was 82.6% on 2016 data. The novelty resides in executing early classification output (up to six weeks before harvest) as well as distinguishing wheat from other winter cereal crops with similar NDVI yearly profiles (i.e., barley and triticale). SEWMA offers a simple, yet effective and budget-saving approach providing early-season classification information, very crucial to decision support systems and the Lebanese government concerning, but not limited to, food production, trade, management and agricultural financial support.

Details

Language :
English
ISSN :
14248220
Database :
OpenAIRE
Journal :
Sensors, Sensors, MDPI, 2018, 18 (7), pp.1-23. ⟨10.3390/s18072089⟩, Sensors (Basel, Switzerland), Sensors, Vol 18, Iss 7, p 2089 (2018), Volume 18, Issue 7
Accession number :
edsair.doi.dedup.....f97573670370a5a0cbc260c83869c52c
Full Text :
https://doi.org/10.3390/s18072089⟩