1. Bradykinesia and rigidity modulated by functional connectivity between the primary motor cortex and globus pallidus in Parkinson's disease.
- Author
-
Kinugawa K, Mano T, Fujimura S, Takatani T, Miyasaka T, and Sugie K
- Subjects
- Humans, Globus Pallidus diagnostic imaging, Hypokinesia diagnostic imaging, Hypokinesia etiology, Magnetic Resonance Imaging methods, Parkinson Disease complications, Parkinson Disease diagnostic imaging, Parkinson Disease drug therapy, Motor Cortex diagnostic imaging
- Abstract
The mechanisms underlying motor fluctuations in patients with Parkinson's disease (PD) are currently unclear. Regional brain stimulation reported the changing of motor symptoms, but the correlation with functional connectivity (FC) in the brain network is not fully understood. Hence, our study aimed to explore the relationship between motor symptom severity and FC using resting-state functional magnetic resonance imaging (rsfMRI) in the "on" and "off" states of PD. In 26 patients with sporadic PD, FC was assessed using rsfMRI, and clinical severity was analyzed using the motor part of the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS Part III) in the on and off states. Correlations between FC values and MDS-UPDRS Part III scores were assessed using Pearson's correlation coefficient. The correlation between FC and motor symptoms differed in the on and off states. FC between the ipsilateral precentral gyrus (PreCG) and globus pallidus (GP) correlated with the total MDS-UPDRS Part III scores and those for bradykinesia/rigidity in the off state. Lateralization analysis indicated that FC between the PreCG and GP correlated with the contralateral total MDS-UPDRS Part III scores and those for bradykinesia/rigidity in the off state. Aberrant FC in cortico-striatal circuits correlated with the severity of motor symptoms in PD. Cortico-striatal hyperconnectivity, particularly in motor pathways involving PreCG and GP, is related to motor impairments in PD. These findings may facilitate our understanding of the mechanisms underlying motor symptoms in PD and aid in developing treatment strategies such as brain stimulation for motor impairment., (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)
- Published
- 2023
- Full Text
- View/download PDF