1. Design of an Internal/External Bicontinuous Conductive Network for High-Performance Asymmetrical Supercapacitors
- Author
-
Anran Shi, Xiumei Song, Lei Wei, Huiyuan Ma, Haijun Pang, Weiwei Li, Xiaowei Liu, and Lichao Tan
- Subjects
Ni-based bimetallic sulfide ,core-shell structure ,bicontinuous conductive network ,polypyrrole coating ,asymmetric supercapacitors ,Organic chemistry ,QD241-441 - Abstract
High-energy density supercapacitors have attracted extensive attention due to their electrode structure design. A synergistic effect related to core–shell structure can improve the energy storage capacity and power density of electrode materials. The Ni-foam (NF) substrate coupled with polypyrrole (PPy) conductive coating can serve as an internal/external bicontinuous conductive network. In this work, the distinctive PPy@FeNi2S4@NF and PPy@NiCo2S4@NF materials were prepared by a simple two-step hydrothermal synthesis with a subsequent in situ polymerization method. PPy@FeNi2S4@NF and PPy@NiCo2S4@NF could deliver ultrahigh specific capacitances of 3870.3 and 5771.4 F·g−1 at 1 A·g−1 and marvelous cycling capability performances of 81.39% and 93.02% after 5000 cycles. The asymmetric supercapacitors composed of the prepared materials provided a high-energy density of over 47.2 Wh·kg−1 at 699.9 W·kg−1 power density and 67.11 Wh·kg−1 at 800 W·kg−1 power density. Therefore, the self-assembled core–shell structure can effectively improve the electrochemical performance and will have an effective service in advanced energy-storage devices.
- Published
- 2022
- Full Text
- View/download PDF