1. High-Resolution 3D MRI With Deep Generative Networks via Novel Slice-Profile Transformation Super-Resolution
- Author
-
Jiahao Lin, Qi Miao, Chuthaporn Surawech, Steven S. Raman, Kai Zhao, Holden H. Wu, and Kyunghyun Sung
- Subjects
Generative adversarial networks ,magnetic resonance imaging ,turbo spin echo ,slice profile ,super-resolution ,Electrical engineering. Electronics. Nuclear engineering ,TK1-9971 - Abstract
High-resolution magnetic resonance imaging (MRI) sequences, such as 3D turbo or fast spin-echo (TSE/FSE) imaging, are clinically desirable but suffer from long scanning time-related blurring when reformatted into preferred orientations. Instead, multi-slice two-dimensional (2D) TSE imaging is commonly used because of its high in-plane resolution but is limited clinically by poor through-plane resolution due to elongated voxels and the inability to generate multi-planar reformations due to staircase artifacts. Therefore, multiple 2D TSE scans are acquired in various orthogonal imaging planes, increasing the overall MRI scan time. In this study, we propose a novel slice-profile transformation super-resolution (SPTSR) framework with deep generative learning for through-plane super-resolution (SR) of multi-slice 2D TSE imaging. The deep generative networks were trained by synthesized low-resolution training input via slice-profile downsampling (SP-DS), and the trained networks inferred on the slice profile convolved (SP-conv) testing input for 5.5x through-plane SR. The network output was further slice-profile deconvolved (SP-deconv) to achieve an isotropic super-resolution. Compared to SMORE SR method and the networks trained by conventional downsampling, our SPTSR framework demonstrated the best overall image quality from 50 testing cases, evaluated by two abdominal radiologists. The quantitative analysis cross-validated the expert reader study results. 3D simulation experiments confirmed the quantitative improvement of the proposed SPTSR and the effectiveness of the SP-deconv step, compared to 3D ground-truths. Ablation studies were conducted on the individual contributions of SP-DS and SP-conv, networks structure, training dataset size, and different slice profiles.
- Published
- 2023
- Full Text
- View/download PDF