Back to Search Start Over

Prostate Microstructure in Prostate Cancer Using 3-T MRI with Diffusion-Relaxation Correlation Spectrum Imaging: Validation with Whole-Mount Digital Histopathology

Authors :
Robert E. Reiter
Melina Hosseiny
Anthony Sisk
Sepideh Shakeri
Steven S. Raman
Amirhossein Mohammadian Bajgiran
Sohrab Afshari Mirak
Afshin Azadikhah
Holden H. Wu
Zhaohuan Zhang
Dieter R. Enzmann
Kyunghyun Sung
Clara E. Magyar
Alan Priester
Source :
Radiology. 296:348-355
Publication Year :
2020
Publisher :
Radiological Society of North America (RSNA), 2020.

Abstract

Background Microstructural MRI has the potential to improve diagnosis and characterization of prostate cancer (PCa), but validation with histopathology is lacking. Purpose To validate ex vivo diffusion-relaxation correlation spectrum imaging (DR-CSI) in the characterization of microstructural tissue compartments in prostate specimens from men with PCa by using registered whole-mount digital histopathology (WMHP) as the reference standard. Materials and Methods Men with PCa who underwent 3-T MRI and robotic-assisted radical prostatectomy between June 2018 and January 2019 were prospectively studied. After prostatectomy, the fresh whole prostate specimens were imaged in patient-specific three-dimensionally printed molds by using 3-T MRI with DR-CSI and were then sliced to create coregistered WMHP slides. The DR-CSI spectral signal component fractions (fA, fB, fC) were compared with epithelial, stromal, and luminal area fractions (fepithelium, fstroma, flumen) quantified in PCa and benign tissue regions. A linear mixed-effects model assessed the correlations between (fA, fB, fC) and (fepithelium, fstroma, flumen), and the strength of correlations was evaluated by using Spearman correlation coefficients. Differences between PCa and benign tissues in terms of DR-CSI signal components and microscopic tissue compartments were assessed using two-sided t tests. Results Prostate specimens from nine men (mean age, 65 years ± 7 [standard deviation]) were evaluated; 20 regions from 17 PCas, along with 20 benign tissue regions of interest, were analyzed. Three DR-CSI spectral signal components (spectral peaks) were consistently identified. The fA, fB, and fC were correlated with fepithelium, fstroma, and flumen (all P < .001), with Spearman correlation coefficients of 0.74 (95% confidence interval [CI]: 0.62, 0.83), 0.80 (95% CI: 0.66, 0.89), and 0.67 (95% CI: 0.51, 0.81), respectively. PCa exhibited differences compared with benign tissues in terms of increased fA (PCa vs benign, 0.37 ± 0.05 vs 0.27 ± 0.06; P < .001), decreased fC (PCa vs benign, 0.18 ± 0.06 vs 0.31 ± 0.13; P = .01), increased fepithelium (PCa vs benign, 0.44 ± 0.13 vs 0.26 ± 0.16; P < .001), and decreased flumen (PCa vs benign, 0.14 ± 0.08 vs 0.27 ± 0.18; P = .004). Conclusion Diffusion-relaxation correlation spectrum imaging signal components correlate with microscopic tissue compartments in the prostate and differ between cancer and benign tissue. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Lee and Hectors in this issue.

Details

ISSN :
15271315 and 00338419
Volume :
296
Database :
OpenAIRE
Journal :
Radiology
Accession number :
edsair.doi.dedup.....929ae09fb0c93871cb17296aafd313dd
Full Text :
https://doi.org/10.1148/radiol.2020192330