1. The chaos in calibrating crop models:Lessons learned from a multi-model calibration exercise
- Author
-
Eckart Priesack, Johannes Wilhelmus Maria Pullens, Heidi Horan, Anne Klosterhalfen, Elisabet Lewan, Marco Moriondo, Emmanuelle Gourdain, Roberto Ferrise, Tobias K. D. Weber, Camilla Dibari, Neil M.J. Crout, Daniel Wallach, Amir Souissi, Jing Wang, Eric Justes, Kurt Christian Kersebaum, Benjamin Dumont, Mohamed Jabloun, Niels Schütze, Qi Jing, G. Padovan, Bernardo Maestrini, Steven Hoek, Mingxia Huang, Sebastian Gayler, Giacomo Trombi, Gerrit Hoogenboom, Qunying Luo, Jørgen E. Olesen, Chuang Zhao, Evelyn Wallor, Per-Erik Jansson, Tommaso Stella, Peter J. Thorburn, Santosh Hiremath, Arne Poyda, Thomas Wöhling, Amit Kumar Srivastava, Thomas Gaiser, Sabine J. Seidel, Budong Qian, Vakhtang Shelia, Henrike Mielenz, Afshin Ghahramani, Allard de Wit, Senthold Asseng, Fety Andrianasolo, Bruno Basso, Liujun Xiao, Zvi Hochman, Taru Palosuo, Yan Zhu, Marie Launay, Cécile Garcia, Xenia Specka, Thilo Streck, Lutz Weihermüller, Hasti Nariman Zadeh, Samuel Buis, AGroécologie, Innovations, teRritoires (AGIR), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Natural Resources Institute Finland (LUKE), CSIRO Agriculture and Food (CSIRO), Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), ARVALIS - Institut du végétal [Paris], ARVALIS - Institut du Végétal [Boigneville], University of Florida [Gainesville] (UF), Michigan State University [East Lansing], Michigan State University System, Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH), Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), University of Nottingham, UK (UON), Department of Agriculture, Food, Environment and Forestry (DAGRI), Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI), Gembloux Agro-Bio Tech [Gembloux], Université de Liège, Institute of Crop Science and Resource Conservation [Bonn] (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, University of Hohenheim, University of Southern Queensland (USQ), Aalto University School of Science and Technology [Aalto, Finland], Wageningen University and Research [Wageningen] (WUR), China Agricultural University (CAU), Royal Institute of Technology [Stockholm] (KTH ), Agriculture and Agri-Food Canada, Saskatoon Research Centre, Agriculture and Agri-Food [Ottawa] (AAFC), Département Performances des systèmes de production et de transformation tropicaux (Cirad-PERSYST), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Leibniz-Zentrum für Agrarlandschaftsforschung = Leibniz Centre for Agricultural Landscape Research (ZALF), Global Change Research Institute (CAS), Institute of Bio- and Geosciences [Jülich] (IBG), Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association, Agroclim (AGROCLIM), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Swedish University of Agricultural Sciences (SLU), Hillridge Technology Pty Ltd, Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI), Institute of Bioeconomy (IBE), Consiglio Nazionale delle Ricerche (CNR), Aarhus University [Aarhus], Kiel University, Helmholtz-Zentrum München (HZM), Technische Universität Dresden = Dresden University of Technology (TU Dresden), Université de Carthage - University of Carthage, Helmholtz-Gemeinschaft = Helmholtz Association, Lincoln Agritech Ltd, Nanjing Agricultural University, Collaborative Research Center 1253 CAMPOS (Project 7: Stochastic Modelling Framework), funded by the German Research Foundation (DFG, Grant Agreement SFB 1253/1 2017), Academy of Finland through projects AICropPro (316172) and DivCSA (316215), National Science Foundation for Distinguished Young Scholars (31725020), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), China Scholarship Council, Agriculture and Agri-Food Canada's Project 1387 under the Canadian Agricultural Partnership, DFG Research Unit FOR 1695 ‘Agricultural Landscapes under Global Climate Change – Processes and Feedbacks on a Regional Scale, U.S. Department of Agriculture National Institute of Food and Agriculture (award no. 2015-68007-23133) and USDA/NIFA HATCH grant N. MCL02368, National Key Research and Development Program of China (2016YFD0300105), Broadacre Agriculture Initiative, a research partnership between University of Southern Queensland and the Queensland Department of Agriculture and Fisheries, Academy of Finland through project AI-CropPro (315896), JPI FACCE MACSUR2 project, funded by the Italian Ministry for Agricultural, Food, and Forestry Policies (D.M. 24064/7303/15 of 6/Nov/2015), Natural Resources Institute Finland (Luke) through a strategic project BoostIA, BonaRes project 'Soil3' (BOMA 03037514) of the Federal Ministry of Education and Research (BMBF), Germany, Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2070 – 390732324 EXC (PhenoRob), Project BiomassWeb of the GlobeE programme (Grant number: FKZ031A258B) funded by the Federal Ministry of Education and Research (BMBF, Germany), INRA ACCAF meta-programme, German Federal Ministry of Education and Research (BMBF) in the framework of the funding measure 'Soil as a Sustainable Resource for the Bioeconomy – BonaRes', project 'BonaRes (Module B): BonaRes Centre for Soil Research, subproject B' (grant 031B0511B), and National Key Research and Development Program of China (2017YFD0300205)
- Subjects
Earth Observation and Environmental Informatics ,Environmental Engineering ,010504 meteorology & atmospheric sciences ,Computer science ,Process (engineering) ,Process-based models ,Model parameters ,Machine learning ,computer.software_genre ,01 natural sciences ,paramètre ,Software ,F01 - Culture des plantes ,Component (UML) ,Aardobservatie en omgevingsinformatica ,Calibration ,Parameter estimation ,Applied Ecology ,0105 earth and related environmental sciences ,U10 - Informatique, mathématiques et statistiques ,Modélisation des cultures ,business.industry ,Estimation theory ,Ecological Modeling ,Toegepaste Ecologie ,Calibration recommendations ,Experimental data ,04 agricultural and veterinary sciences ,PE&RC ,[STAT]Statistics [stat] ,CHAOS (operating system) ,Phenology ,Calibration Recommendations ,Process-based Models ,Parameter Estimation ,[SDE]Environmental Sciences ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,Artificial intelligence ,ddc:004 ,Phénologie ,Modèle végétal ,business ,computer - Abstract
International audience; Calibration, the estimation of model parameters based on fitting the model to experimental data, is among the first steps in many applications of process-based models and has an important impact on simulated values. We propose a novel method of developing guidelines for calibration of process-based models, based on development of recommendations for calibration of the phenology component of crop models. The approach was based on a multi-model study, where all teams were provided with the same data and asked to return simulations for the same conditions. All teams were asked to document in detail their calibration approach, including choices with respect to criteria for best parameters, choice of parameters to estimate and software. Based on an analysis of the advantages and disadvantages of the various choices, we propose calibration recommendations that cover a comprehensive list of decisions and that are based on actual practices.
- Published
- 2021
- Full Text
- View/download PDF