Back to Search Start Over

How well do crop modeling groups predict wheat phenology, given calibration data from the target population?

Authors :
Allard de Wit
Emmanuelle Gourdain
Chuang Zhao
Bruno Basso
Tommaso Stella
Sebastian Gayler
Qi Jing
Eric Justes
Marco Moriondo
Arne Poyda
Zvi Hochman
Kurt Christian Kersebaum
Neil M.J. Crout
Eckart Priesack
Niels Schütze
Sabine J. Seidel
T. Palosuo
Heidi Horan
Amit Kumar Srivastava
Amir Souissi
Anne Klosterhalfen
Giacomo Trombi
Gerrit Hoogenboom
Vakhtang Shelia
Tobias K. D. Weber
Evelyn Wallor
Daniel Wallach
Yan Zhu
Mohamed Jabloun
Budong Qian
Cécile Garcia
Johannes Wilhelmus Maria Pullens
Xenia Specka
Benjamin Dumont
Qunying Luo
Jing Wang
Camilla Dibari
Peter J. Thorburn
Roberto Ferrise
Bernardo Maestrini
Jørgen E. Olesen
Afshin Ghahramani
Senthold Asseng
Lutz Weihermüller
Marie Launay
Thomas Gaiser
Thilo Streck
Thomas Wöhling
Liujun Xiao
Henrike Mielenz
Steven Hoek
Mingxia Huang
Samuel Buis
Hasti Nariman Zadeh
AGroécologie, Innovations, teRritoires (AGIR)
Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Natural Resources Institute Finland (LUKE)
Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO)
ARVALIS - Institut du végétal [Paris]
The University of Florida College of Medicine
Michigan State University [East Lansing]
Michigan State University System
Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH)
Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
University of Nottingham, UK (UON)
Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI)
Unité de recherche TERRA [Gembloux]
Gembloux Agro-Bio Tech [Gembloux]
Université de Liège-Université de Liège
University of Hohenheim
ARVALIS - Institut du Végétal [Ouzouer le Marché] (ARVALIS)
University of Southern Queensland (USQ)
CSIRO Agriculture and Food (CSIRO)
University of North Florida [Jacksonville] (UNF)
University of Florida [Gainesville] (UF)
China Agricultural University Library
University of Nottingham Ningbo [China]
Agriculture and Agri-Food Canada, Saskatoon Research Centre
Agriculture and Agri-Food [Ottawa] (AAFC)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)
Inst Landscape Biogeochem, Leibniz Ctr Agr Landscape Res, Muncheberg, Germany
Partenaires INRAE
∗Agrosphere (IBG-3), Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
Institute of Bio- and Geosciences [Jülich] (IBG)
Forschungszentrum Jülich GmbH | Centre de recherche de Juliers
Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association-Forschungszentrum Jülich GmbH | Centre de recherche de Juliers
Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association
Agroclim (AGROCLIM)
Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Hillridge Technology Pty Ltd
Wageningen University and Research [Wageningen] (WUR)
Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI)
Aalto University School of Science and Technology [Aalto, Finland]
Aarhus University [Aarhus]
Kiel University
German Res Ctr Environm Hlth
Technische Universität Dresden = Dresden University of Technology (TU Dresden)
Université de Carthage - University of Carthage
University of Bonn
Université de Florence
China Agricultural University (CAU)
Helmholtz-Gemeinschaft = Helmholtz Association
Nanjing Agricultural University
Institut für Genetik - Universität Bonn / Institute of Genetics - University of Bonn
German Research Foundation (DFG, Grant Agreement SFB 1253/1 2017), the Academy of Finland through projects AI-CropPro (316172 and 315896) and DivCSA (316215) BonaRes Center for Soil Research, subproject ‘Sustainable Subsoil Management – Soil3’ (grant 031B0151A), project BiomassWeb of the GlobeE programme (Grant number: FKZ031A258B)BonaRes Centre for Soil Research, subproject B' (grant 031B0511B), the National Key Research and Development Program of China (2017YFD0300205), the National Science Foundation for Distinguished Young Scholars (31725020),Program Development of Jiangsu Higher Education Institutions (PAPD), the 111 project (B16026)National Institute of Food and Agriculture (award no. 2015-68007-23133) USDA/NIFA HATCHgrant No. MCL02368, the National Key Research and Development Program of China (2016YFD0300105),Forestry Policies (D.M. 24064/7303/15 of 26/Nov/2015)
Source :
Wallach, D, Palosuo, T, Thorburn, P, Gourdain, E, Asseng, S, Basso, B, Buis, S, Crout, N, Dibari, C, Dumont, B, Ferrise, R, Gaiser, T, Garcia, C, Gayler, S, Ghahramani, A, Hochman, Z, Hoek, S, Hoogenboom, G, Horan, H, Huang, M, Jabloun, M, Jing, Q, Justes, E, Kersebaum, K C, Klosterhalfen, A, Launay, M, Luo, Q, Maestrini, B, Mielenz, H, Moriondo, M, Nariman Zadeh, H, Olesen, J E, Poyda, A, Priesack, E, Pullens, J W M, Qian, B, Schütze, N, Shelia, V, Souissi, A, Specka, X, Srivastava, A K, Stella, T, Streck, T, Trombi, G, Wallor, E, Wang, J, Weber, T K D, Weihermüller, L, de Wit, A, Wöhling, T, Xiao, L, Zhao, C, Zhu, Y & Seidel, S J 2021, ' How well do crop modeling groups predict wheat phenology, given calibration data from the target population? ', European Journal of Agronomy, vol. 124, 126195 . https://doi.org/10.1016/j.eja.2020.126195, Eur. J. Agron. 124:126195 (2021), European Journal of Agronomy 124 (2021), European Journal of Agronomy, European Journal of Agronomy, 2021, 124, ⟨10.1016/j.eja.2020.126195⟩, European journal of agronomy 124, 126195-(2021). doi:10.1016/j.eja.2020.126195, European Journal of Agronomy, 124
Publication Year :
2021

Abstract

Plant phenology, which describes the timing of plant development, is a major aspect of plant response to environment and for crops, a major determinant of yield. Since climate change is projected to alter crop phenology worldwide, there is a large effort to predict phenology as a function of environment. Many studies have focused on comparing model equations for describing how phenology responds to weather but the effect of crop model calibration, also expected to be important, has received much less attention. The objective here was to obtain a rigorous evaluation of prediction capability of wheat crop phenology models, and to analyze the role of calibration. The 27 participants in this multi-model study were provided experimental data for calibration and asked to submit predictions for sites and years not represented in those data. Participants were instructed to use and document their 99usual99 calibration approach. Overall, the models provided quite good predictions of phenology (median of mean absolute error of 6.1 days) and did much better than simply using the average of observed values as predictor. Calibration was found to compensate to some extent for differences between models, specifically for differences in simulated time to emergence and differences in the choice of input variables. Conversely, different calibration approaches led to major differences in prediction error between models with the same structure. Given the large diversity of calibration approaches and the importance of calibration, there is a clear need for guidelines and tools to aid with calibration. Arguably the most important and difficult choice for calibration is the choice of parameters to estimate. Several recommendations for calibration practices are proposed. Model applications, including model studies of climate change impact, should focus more on the data used for calibration and on the calibration methods employed.

Details

Language :
English
ISSN :
11610301
Database :
OpenAIRE
Journal :
Wallach, D, Palosuo, T, Thorburn, P, Gourdain, E, Asseng, S, Basso, B, Buis, S, Crout, N, Dibari, C, Dumont, B, Ferrise, R, Gaiser, T, Garcia, C, Gayler, S, Ghahramani, A, Hochman, Z, Hoek, S, Hoogenboom, G, Horan, H, Huang, M, Jabloun, M, Jing, Q, Justes, E, Kersebaum, K C, Klosterhalfen, A, Launay, M, Luo, Q, Maestrini, B, Mielenz, H, Moriondo, M, Nariman Zadeh, H, Olesen, J E, Poyda, A, Priesack, E, Pullens, J W M, Qian, B, Schütze, N, Shelia, V, Souissi, A, Specka, X, Srivastava, A K, Stella, T, Streck, T, Trombi, G, Wallor, E, Wang, J, Weber, T K D, Weihermüller, L, de Wit, A, Wöhling, T, Xiao, L, Zhao, C, Zhu, Y & Seidel, S J 2021, ' How well do crop modeling groups predict wheat phenology, given calibration data from the target population? ', European Journal of Agronomy, vol. 124, 126195 . https://doi.org/10.1016/j.eja.2020.126195, Eur. J. Agron. 124:126195 (2021), European Journal of Agronomy 124 (2021), European Journal of Agronomy, European Journal of Agronomy, 2021, 124, ⟨10.1016/j.eja.2020.126195⟩, European journal of agronomy 124, 126195-(2021). doi:10.1016/j.eja.2020.126195, European Journal of Agronomy, 124
Accession number :
edsair.doi.dedup.....0dab2cce551cfb9206c4b19a1aee7942
Full Text :
https://doi.org/10.1016/j.eja.2020.126195