1. Genetic architecture and genomic prediction accuracy of apple quantitative traits across environments
- Author
-
Christian Dujak, Beat Keller, Maria José Aranzana, Andrea Knauf, Marijn Rymenants, Annemarie Auwerkerken, François Laurens, Nadia Sanin, Michaela Jung, Helene Muranty, Frédérique Didelot, Mariusz Lewandowski, Andrea Patocchi, Walter Guerra, Bruno Studer, Morgane Roth, Mehdi Al-Rifai, Carolina Font i Forcada, Breeding Research Group, Institute of Agrifood Research and Technology (IRTA), Centre for Research in Agricultural Genomics (CRAG), Better3Fruit N.V., Research Centre Laimburg, Institut de Recherche en Horticulture et Semences (IRHS), Université d'Angers (UA)-AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), The National Institute of Horticultural Research, Unité Horticole (HORTI), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), and Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich
- Subjects
0106 biological sciences ,0303 health sciences ,Multivariate statistics ,fungi ,Univariate ,Genome-wide association study ,Computational biology ,Biology ,Quantitative trait locus ,biochemical phenomena, metabolism, and nutrition ,equipment and supplies ,01 natural sciences ,complex mixtures ,Genetic architecture ,[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics ,03 medical and health sciences ,[SDV.BV.AP]Life Sciences [q-bio]/Vegetal Biology/Plant breeding ,Genotype ,Trait ,bacteria ,Predictive modelling ,030304 developmental biology ,010606 plant biology & botany - Abstract
Implementation of genomic tools is desirable to increase the efficiency of apple breeding. The apple reference population (apple REFPOP) proved useful for rediscovering loci, estimating genomic prediction accuracy, and studying genotype by environment interactions (G×E). Here we show contrasting genetic architecture and genomic prediction accuracies for 30 quantitative traits across up to six European locations using the apple REFPOP. A total of 59 stable and 277 location-specific associations were found using GWAS, 69.2% of which are novel when compared with 41 reviewed publications. Average genomic prediction accuracies of 0.18–0.88 were estimated using single-environment univariate, single-environment multivariate, multi-environment univariate, and multi-environment multivariate models. The G×E accounted for up to 24% of the phenotypic variability. This most comprehensive genomic study in apple in terms of trait-environment combinations provided knowledge of trait biology and prediction models that can be readily applied for marker-assisted or genomic selection, thus facilitating increased breeding efficiency.
- Published
- 2021