Back to Search Start Over

Genetic architecture and genomic prediction accuracy of apple quantitative traits across environments

Authors :
Christian Dujak
Beat Keller
Maria José Aranzana
Andrea Knauf
Marijn Rymenants
Annemarie Auwerkerken
François Laurens
Nadia Sanin
Michaela Jung
Helene Muranty
Frédérique Didelot
Mariusz Lewandowski
Andrea Patocchi
Walter Guerra
Bruno Studer
Morgane Roth
Mehdi Al-Rifai
Carolina Font i Forcada
Breeding Research Group
Institute of Agrifood Research and Technology (IRTA)
Centre for Research in Agricultural Genomics (CRAG)
Better3Fruit N.V.
Research Centre Laimburg
Institut de Recherche en Horticulture et Semences (IRHS)
Université d'Angers (UA)-AGROCAMPUS OUEST
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
The National Institute of Horticultural Research
Unité Horticole (HORTI)
Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

Implementation of genomic tools is desirable to increase the efficiency of apple breeding. The apple reference population (apple REFPOP) proved useful for rediscovering loci, estimating genomic prediction accuracy, and studying genotype by environment interactions (G×E). Here we show contrasting genetic architecture and genomic prediction accuracies for 30 quantitative traits across up to six European locations using the apple REFPOP. A total of 59 stable and 277 location-specific associations were found using GWAS, 69.2% of which are novel when compared with 41 reviewed publications. Average genomic prediction accuracies of 0.18–0.88 were estimated using single-environment univariate, single-environment multivariate, multi-environment univariate, and multi-environment multivariate models. The G×E accounted for up to 24% of the phenotypic variability. This most comprehensive genomic study in apple in terms of trait-environment combinations provided knowledge of trait biology and prediction models that can be readily applied for marker-assisted or genomic selection, thus facilitating increased breeding efficiency.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....6e07f60af1a3b91faea44340994da850