1. Multifield tunable valley splitting and anomalous valley Hall effect in two-dimensional antiferromagnetic MnBr
- Author
-
Wang, Yiding, Sun, Hanbo, Wu, Chao, Zhang, Weixi, Guo, San-Dong, She, Yanchao, and Li, Ping
- Subjects
Condensed Matter - Materials Science ,Condensed Matter - Mesoscale and Nanoscale Physics - Abstract
Compared to the ferromagnetic materials that realize the anomalous valley Hall effect by breaking time-reversal symmetry and spin-orbit coupling, the antiferromagnetic materials with the joint spatial inversion and time-reversal (PT) symmetry are rarely reported that achieve the anomalous valley Hall effect. Here, we predict that the antiferromagnetic monolayer MnBr possesses spontaneous valley polarization. The valley splitting of valence band maximum is 21.55 meV at K and K' points, which is originated from Mn-dx2-y2 orbital by analyzing the effective Hamiltonian. Importantly, monolayer MnBr has zero Berry curvature in the entire momentum space but non-zero spin-layer locked Berry curvature, which offers the condition for the anomalous valley Hall effect. In addition, the magnitude of valley splitting can be signally tuned by the onsite correlation, strain, magnetization rotation, electric field, and built-in electric field. The electric field and built-in electric field induce spin splitting due to breaking the P symmetry. Therefore, the spin-layer locked anomalous valley Hall effect can be observed in MnBr. More remarkably, the ferroelectric substrate Sc2CO2 can tune monolayer MnBr to realize the transition from metal to valley polarization semiconductor. Our findings not only extend the implementation of the anomalous valley Hall effect, but also provides a platform for designing low-power and non-volatile valleytronics devices., Comment: 9 pages, 10 figures
- Published
- 2024