Back to Search Start Over

Electric-field induced magnetic-anisotropy transformation to achieve spontaneous valley polarization

Authors :
Guo, San-Dong
Guo, Xiao-Shu
Wang, Guang-Zhao
Cheng, Kai
Ang, Yee-Sin
Publication Year :
2022

Abstract

Valleytronics has been widely investigated for providing new degrees of freedom to future information coding and processing. Here, it is proposed that valley polarization can be achieved by electric field induced magnetic anisotropy (MA) transformation. Through the first-principle calculations, our idea is illustrated by a concrete example of $\mathrm{VSi_2P_4}$ monolayer. The increasing electric field can induce a transition of MA from in-plane to out-of-plane by changing magnetic anisotropy energy (MAE) from negative to positive value, which is mainly due to increasing magnetocrystalline anisotropy (MCA) energy. The out-of-plane magnetization is in favour of spontaneous valley polarization in $\mathrm{VSi_2P_4}$. Within considered electric field range, $\mathrm{VSi_2P_4}$ is always ferromagnetic (FM) ground state. In a certain range of electric field, the coexistence of semiconductor and out-of-plane magnetization makes $\mathrm{VSi_2P_4}$ become a true ferrovalley (FV) material. The anomalous valley Hall effect (AVHE) can be observed under in-plane and out-of-plane electrical field in $\mathrm{VSi_2P_4}$. Our works pave the way to design the ferrovalley material by electric field.<br />Comment: 6 pages, 6 figures. arXiv admin note: text overlap with arXiv:2207.13420

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2208.02425
Document Type :
Working Paper