32 results on '"Guerrero-López R"'
Search Results
2. Nueva mutación en el gen STXBP1 en un paciente con síndrome de Ohtahara no lesional
- Author
-
Ortega-Moreno, L., Giráldez, B.G., Verdú, A., García-Campos, O., Sánchez-Martín, G., Serratosa, J.M., and Guerrero-López, R.
- Published
- 2016
- Full Text
- View/download PDF
3. Disease-associated GRIN protein truncating variants trigger NMDA receptor loss-of-function
- Author
-
Santos-Gómez A, Miguez-Cabello F, García-Recio A, Locubiche S, García-Díaz R, Soto V, Guerrero-López R, Julià-Palacios NA, Ciruela F, Garcia-Cazorla A, Soto D, Olivella M, and Altafaj X
- Abstract
De novo GRIN variants, encoding for the ionotropic glutamate NMDA receptor subunits, have been recently associated with GRIN-related disorders, a group of rare paediatric encephalopathies. Current investigational and clinical efforts are focused to functionally stratify GRIN variants, towards precision therapies of this primary disturbance of glutamatergic transmission that affects neuronal function and brain. In the present study, we aimed to comprehensively delineate the functional outcomes and clinical phenotypes of GRIN protein truncating variants (PTVs)-accounting for ~20% of disease-associated GRIN variants-hypothetically provoking NMDAR hypofunctionality. To tackle this question, we created a comprehensive GRIN PTVs variants database compiling a cohort of nine individuals harbouring GRIN PTVs, together with previously identified variants, to build-up an extensive GRIN PTVs repertoire composed of 293 unique variants. Genotype-phenotype correlation studies were conducted, followed by cell-based assays of selected paradigmatic GRIN PTVs and their functional annotation. Genetic and clinical phenotypes meta-analysis revealed that heterozygous GRIN1, GRIN2C, GRIN2D, GRIN3A and GRIN3B PTVs are non-pathogenic. In contrast, heterozygous GRIN2A and GRIN2B PTVs are associated with specific neurological clinical phenotypes in a subunit- and domain-dependent manner. Mechanistically, cell-based assays showed that paradigmatic pathogenic GRIN2A and GRIN2B PTVs result on a decrease of NMDAR surface expression and NMDAR-mediated currents, ultimately leading to NMDAR functional haploinsufficiency. Overall, these findings contribute to delineate GRIN PTVs genotype-phenotype association and GRIN variants stratification. Functional studies showed that GRIN2A and GRIN2B pathogenic PTVs trigger NMDAR hypofunctionality, and thus accelerate therapeutic decisions for this neurodevelopmental condition.
- Published
- 2021
4. Plasma progranulin levels in cortical dementia phenotypes with asymmetric perisylvian atrophy
- Author
-
Gómez-Tortosa, E., Guerrero-López, R., Gil-Neciga, E., Franco, E., del Ser, T., Escrig, Jiménez A., Pérez-Pérez, J., and Sainz, M. J.
- Published
- 2013
- Full Text
- View/download PDF
5. alpha-Secretase nonsense mutation (ADAM10 Tyr167*) in familial Alzheimer's disease
- Author
-
Agüero P, Sainz MJ, García-Ayllón MS, Sáez-Valero J, Téllez R, Guerrero-López R, Pérez-Pérez J, Jiménez-Escrig A, and Gómez-Tortosa E
- Subjects
s disease ,α ,Genetics ,ADAM10 ,Familial Alzheimer’ ,Secretase - Abstract
Background The disintegrin metalloproteinase 10 (ADAM10) is the main alpha-secretase acting in the non-amyloidogenic processing of APP. Some ADAM10 gene variants have been associated with higher susceptibility to develop late-onset AD, though clear clinical-genetic correlates remain elusive. Methods Clinical-genetic and biomarker study of a first family with early- and late-onset AD associated with a nonsense ADAM10 mutation (p.Tyr167*). CSF analysis included AD core biomarkers, as well as Western blot of ADAM10 species and sAPP alpha and sAPP beta peptides. We evaluate variant's pathogenicity, pattern of segregation, and further screened for the p.Tyr167* mutation in 197 familial AD cases from the same cohort, 200 controls from the same background, and 274 AD cases from an independent Spanish cohort. Results The mutation was absent from public databases and segregated with the disease. CSF A beta 42, total tau, and phosphorylated tau of affected siblings were consistent with AD. The predicted haploinsufficiency effect of the nonsense mutation was supported by (a) ADAM10 isoforms in CSF decreased around 50% and (b) 70% reduction of CSF sAPP alpha peptide, both compared to controls, while sAPP beta levels remained unchanged. Interestingly, sporadic AD cases had a similar decrease in CSF ADAM10 levels to that of mutants, though their sAPP alpha and sAPP beta levels resembled those of controls. Therefore, a decreased sAPP alpha/sAPP beta ratio was an exclusive feature of mutant ADAM10 siblings. The p.Tyr167* mutation was not found in any of the other AD cases or controls screened. Conclusions This family illustrates the role of ADAM10 in the amyloidogenic process and the clinical development of the disease. Similarities between clinical and biomarker findings suggest that this family could represent a genetic model for sporadic late-onset AD due to age-related downregulation of alpha-secretase. This report encourages future research on ADAM10 enhancers.
- Published
- 2020
6. Biomarcadores en la artrosis: utilidad de la proteína oligomérica de la matriz cartilaginosa (COMP) y de los glucosaminoglicanos sulfatados (sGAG) en la valoración del cartílago articular
- Author
-
Acebes-Cachafeiro, J.C., primary, Calvo-Crespo, E., additional, Guerrero-López, R., additional, and Herrero-Beaumont, G., additional
- Published
- 2004
- Full Text
- View/download PDF
7. Nueva mutación en el gen STXBP1en un paciente con síndrome de Ohtahara no lesional
- Author
-
Ortega-Moreno, L., Giráldez, B.G., Verdú, A., García-Campos, O., Sánchez-Martín, G., Serratosa, J.M., and Guerrero-López, R.
- Abstract
El síndrome de Ohtahara (SO, OMIM#308350, ORPHA1934) es una encefalopatía epiléptica de inicio precoz (EEIP) caracterizada por espasmos, crisis epilépticas intratables, un trazado electroencefalográfico de brote-supresión y retraso psicomotor grave. En la mayoría de los pacientes con SO se han identificado mutaciones en el gen STXBP1, que codifica para la proteína de unión a sintaxina 1 y que está implicado en el mecanismo de exocitosis de las vesículas sinápticas.
- Published
- 2016
- Full Text
- View/download PDF
8. C9ORF72 hexanucleotide expansions of 20-22 repeats are associated with frontotemporal deterioration.
- Author
-
Gómez-Tortosa E, Gallego J, Guerrero-López R, Marcos A, Gil-Neciga E, Sainz MJ, Díaz A, Franco-Macías E, Trujillo-Tiebas MJ, Ayuso C, and Pérez-Pérez J
- Published
- 2013
- Full Text
- View/download PDF
9. Rare coding variants in genes encoding GABAA receptors in genetic generalised epilepsies: an exome-based case-control study
- Author
-
Patrick May, Simon Girard, Merle Harrer, Dheeraj R Bobbili, Julian Schubert, Stefan Wolking, Felicitas Becker, Pamela Lachance-Touchette, Caroline Meloche, Micheline Gravel, Cristina E Niturad, Julia Knaus, Carolien De Kovel, Mohamad Toliat, Anne Polvi, Michele Iacomino, Rosa Guerrero-López, Stéphanie Baulac, Carla Marini, Holger Thiele, Janine Altmüller, Kamel Jabbari, Ann-Kathrin Ruppert, Wiktor Jurkowski, Dennis Lal, Raffaella Rusconi, Sandrine Cestèle, Benedetta Terragni, Ian D Coombs, Christopher A Reid, Pasquale Striano, Hande Caglayan, Auli Siren, Kate Everett, Rikke S Møller, Helle Hjalgrim, Hiltrud Muhle, Ingo Helbig, Wolfram S Kunz, Yvonne G Weber, Sarah Weckhuysen, Peter De Jonghe, Sanjay M Sisodiya, Rima Nabbout, Silvana Franceschetti, Antonietta Coppola, Maria S Vari, Dorothée Kasteleijn-Nolst Trenité, Betul Baykan, Ugur Ozbek, Nerses Bebek, Karl M Klein, Felix Rosenow, Dang K Nguyen, François Dubeau, Lionel Carmant, Anne Lortie, Richard Desbiens, Jean-François Clément, Cécile Cieuta-Walti, Graeme J Sills, Pauls Auce, Ben Francis, Michael R Johnson, Anthony G Marson, Bianca Berghuis, Josemir W Sander, Andreja Avbersek, Mark McCormack, Gianpiero L Cavalleri, Norman Delanty, Chantal Depondt, Martin Krenn, Fritz Zimprich, Sarah Peter, Marina Nikanorova, Robert Kraaij, Jeroen van Rooij, Rudi Balling, M Arfan Ikram, André G Uitterlinden, Giuliano Avanzini, Stephanie Schorge, Steven Petrou, Massimo Mantegazza, Thomas Sander, Eric LeGuern, Jose M Serratosa, Bobby P C Koeleman, Aarno Palotie, Anna-Elina Lehesjoki, Michael Nothnagel, Peter Nürnberg, Snezana Maljevic, Federico Zara, Patrick Cossette, Roland Krause, Holger Lerche, Edoardo Ferlazzo, Carlo di Bonaventura, Angela La Neve, Paolo Tinuper, Francesca Bisulli, Aglaia Vignoli, Giuseppe Capovilla, Giovanni Crichiutti, Antonio Gambardella, Vincenzo Belcastro, Amedeo Bianchi, Destina Yalçın, Gulsen Dizdarer, Kezban Arslan, Zuhal Yapıcı, Demet Kuşcu, Costin Leu, Kristin Heggeli, Joseph Willis, Sarah R Langley, Andrea Jorgensen, Prashant Srivastava, Sarah Rau, Christian Hengsbach, Anja C.M. Sonsma, Université Côte d'Azur, CNRS, UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, Erasmus University Medical Center [Rotterdam] (Erasmus MC), Laboratory of Molecular Genetics of Stem Cells [University of Montreal], University of Montreal-Institut de Recherche en Immunologie et en Cancérologie [UdeM-Montréal] (IRIC), Université de Montréal (UdeM)-Université de Montréal (UdeM), University of Tübingen, University Medical Center [Utrecht], Universita degli studi di Genova, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), A.Meyer Children's Hospital, Max Planck Institute for Plant Breeding Research (MPIPZ), Génomique métabolique (UMR 8030), Genoscope - Centre national de séquençage [Evry] (GENOSCOPE), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS), University of Cologne, The Genome Analysis Centre (TGAC), Cologne Center for Genomics, Institut de pharmacologie moléculaire et cellulaire (IPMC), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), Ingénierie des protéines (IP), Université de la Méditerranée - Aix-Marseille 2-Centre National de la Recherche Scientifique (CNRS), Department of Neurophysiopathology, Besta Neurological Institute, University of Southern Denmark (SDU), Medical Genetics Laboratory, Children’s Hospital of Philadelphia (CHOP ), Universitätsklinikum Bonn (UKB), Antwerp University Hospital [Edegem] (UZA), University of Antwerp (UA), Department of Clinical and Experimental Epilepsy, University College of London [London] (UCL), Département de Neuropédiatrie, CHU Necker - Enfants Malades [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Instituco Neurologico C. Besta, Instituto Neurologico C. Besta, Medical Genetics and Pediatric Cardiology, IRCCS Ospedale Pediatrico Bambino Gesù [Roma], Département de mathématiques [Sherbrooke] (UdeS), Faculté des sciences [Sherbrooke] (UdeS), Université de Sherbrooke (UdeS)-Université de Sherbrooke (UdeS), University of Liverpool, Institute of Neurology [London], Royal College of Surgeons in Ireland (RCSI), Neurology Division, Beaumont Hospital, Dublin 9, Ireland, Beaumont Hospital, Hôpital Erasme [Bruxelles] (ULB), Faculté de Médecine [Bruxelles] (ULB), Université libre de Bruxelles (ULB)-Université libre de Bruxelles (ULB), Medizinische Universität Wien = Medical University of Vienna, Department of Epilepsy Clinic and Experimental Neurophysiology, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Broad Institute of MIT and Harvard (BROAD INSTITUTE), Harvard Medical School [Boston] (HMS)-Massachusetts Institute of Technology (MIT)-Massachusetts General Hospital [Boston], Department of Medical and Clinical Genetics [Helsinki], Haartman Institute [Helsinki], Faculty of Medecine [Helsinki], Helsingin yliopisto = Helsingfors universitet = University of Helsinki-Helsingin yliopisto = Helsingfors universitet = University of Helsinki-Faculty of Medecine [Helsinki], Helsingin yliopisto = Helsingfors universitet = University of Helsinki-Helsingin yliopisto = Helsingfors universitet = University of Helsinki, Institute of Medical Informatics and Statistics, Pediatric Neurology and Neuromuscular Diseases Unit, Centre Hospitalier de l'Université de Montréal (CHUM), Université de Montréal (UdeM), Hertie Institute for Clinical Brain Research [Tubingen], Regional Epilepsy Center, Reggio Calabria, Agronomes et Vétérinaires Sans Frontières (AVSF), AVSF, NIHR Biomedical Research Centre [London], Guy's and St Thomas' NHS Foundation Trust-King‘s College London, Wellcome Trust, Commission of the European Communities, Imperial College Healthcare NHS Trust- BRC Funding, Internal Medicine, Epidemiology, Luxembourg Centre For Systems Biomedicine (LCSB), University of Luxembourg [Luxembourg], Università degli studi di Genova = University of Genoa (UniGe), Heart Center Leipzig, University Medical Center of Schleswig–Holstein = Universitätsklinikum Schleswig-Holstein (UKSH), Kiel University, Acibadem University Dspace, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université d'Évry-Val-d'Essonne (UEVE), Université Nice Sophia Antipolis (... - 2019) (UNS), University of Helsinki-University of Helsinki-Faculty of Medecine [Helsinki], University of Helsinki-University of Helsinki, Centre of Excellence in Complex Disease Genetics, Aarno Palotie / Principal Investigator, Institute for Molecular Medicine Finland, Medicum, Research Programme for Molecular Neurology, Research Programs Unit, Neuroscience Center, University of Helsinki, Genomics of Neurological and Neuropsychiatric Disorders, Epicure Consortium, EuroEPINOMICS COGIE Consortium, EpiPGX Consortium, May, Gabriella, Girard, S., Harrer, M., Bobbili, D. R., Schubert, J., Wolking, S., Becker, F., Lachance-Touchette, P., Meloche, C., Gravel, M., Niturad, C. E., Knaus, J., De Kovel, C., Toliat, M., Polvi, A., Iacomino, M., Guerrero-López, R., Baulac, S., Marini, C., Thiele, H., Altmüller, J., Jabbari, K., Ruppert, A. -K., Jurkowski, W., Lal, D., Rusconi, R., Cestèle, S., Terragni, B., Coombs, I. D., Reid, C. A., Striano, P., Caglayan, H., Siren, A., Everett, K., Møller, R. S., Hjalgrim, H., Muhle, H., Helbig, I., Kunz, W. S., Weber, Y. G., Weckhuysen, S., Jonghe, P. D., Sisodiya, S. M., Nabbout, R., Franceschetti, S., Coppola, A., Vari, M. S., Kasteleijn-Nolst Trenité, D., Baykan, B., Ozbek, U., Bebek, N., Klein, K. M., Rosenow, F., Nguyen, D. K., Dubeau, F., Carmant, L., Lortie, A., Desbiens, R., Clément, J. -F., Cieuta-Walti, C., Sills, G. J., Auce, P., Francis, B., Johnson, M. R., Marson, A. G., Berghuis, B., Sander, J. W., Avbersek, A., Mccormack, M., Cavalleri, G. L., Delanty, N., Depondt, C., Krenn, M., Zimprich, F., Peter, S., Nikanorova, M., Kraaij, R., van Rooij, J., Balling, R., Ikram, M. A., Uitterlinden, A. G., Avanzini, Giulio, Schorge, S., Petrou, S., Mantegazza, M., Sander, T., Leguern, E., Serratosa, J. M., Koeleman, B. P. C., Palotie, A., Lehesjoki, A. -E., Nothnagel, M., Nürnberg, P., Maljevic, S., Zara, F., Cossette, P., Krause, R., Lerche, H., De Jonghe, P., Arfan Ikram, M., Ferlazzo, E., di Bonaventura, C., La Neve, A., Tinuper, P., Bisulli, F., Vignoli, Massimo, Capovilla, G., Crichiutti, G., Gambardella, A., Belcastro, V., Bianchi, A., Yalçın, D., Dizdarer, G., Arslan, K., Yapıcı, Z., Kuşcu, D., Leu, C., Heggeli, K., Willis, J., Langley, S. R., Jorgensen, A., Srivastava, P., Rau, S., Hengsbach, C., Sonsma, A. C. M., University of Montreal-Institute for Research in Immunology and Cancer (IRIC), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université d'Évry-Val-d'Essonne (UEVE), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Département de Mathématiques, Université de Sherbrooke, Université de Sherbrooke [Sherbrooke], Hôpital Erasme (Bruxelles), May, Patrick, Girard, Simon, Harrer, Merle, Bobbili, Dheeraj R, Schubert, Julian, Wolking, Stefan, Becker, Felicita, Lachance-Touchette, Pamela, Meloche, Caroline, Gravel, Micheline, Niturad, Cristina E, Knaus, Julia, De Kovel, Carolien, Toliat, Mohamad, Polvi, Anne, Iacomino, Michele, Guerrero-López, Rosa, Baulac, Stéphanie, Marini, Carla, Thiele, Holger, Altmüller, Janine, Jabbari, Kamel, Ruppert, Ann-Kathrin, Jurkowski, Wiktor, Lal, Denni, Rusconi, Raffaella, Cestèle, Sandrine, Terragni, Benedetta, Coombs, Ian D, Reid, Christopher A, Striano, Pasquale, Caglayan, Hande, Siren, Auli, Everett, Kate, Møller, Rikke S, Hjalgrim, Helle, Muhle, Hiltrud, Helbig, Ingo, Kunz, Wolfram S, Weber, Yvonne G, Weckhuysen, Sarah, Jonghe, Peter De, Sisodiya, Sanjay M, Nabbout, Rima, Franceschetti, Silvana, Coppola, Antonietta, Vari, Maria S, Kasteleijn-Nolst Trenité, Dorothée, Baykan, Betul, Ozbek, Ugur, Bebek, Nerse, Klein, Karl M, Rosenow, Felix, Nguyen, Dang K, Dubeau, Françoi, Carmant, Lionel, Lortie, Anne, Desbiens, Richard, Clément, Jean-Françoi, Cieuta-Walti, Cécile, Sills, Graeme J, Auce, Paul, Francis, Ben, Johnson, Michael R, Marson, Anthony G, Berghuis, Bianca, Sander, Josemir W, Avbersek, Andreja, McCormack, Mark, Cavalleri, Gianpiero L., Delanty, Norman, Depondt, Chantal, Krenn, Martin, Zimprich, Fritz, Peter, Sarah, Nikanorova, Marina, Kraaij, Robert, van Rooij, Jeroen, Balling, Rudi, Ikram, M Arfan, Uitterlinden, André G, Avanzini, Giuliano, Schorge, Stephanie, Petrou, Steven, Mantegazza, Massimo, Sander, Thoma, LeGuern, Eric, Serratosa, Jose M, Koeleman, Bobby P C, Palotie, Aarno, Lehesjoki, Anna-Elina, Nothnagel, Michael, Nürnberg, Peter, Maljevic, Snezana, Zara, Federico, Cossette, Patrick, Krause, Roland, Lerche, Holger, De Jonghe, Peter, Ferlazzo, Edoardo, di Bonaventura, Carlo, La Neve, Angela, Tinuper, Paolo, Bisulli, Francesca, Vignoli, Aglaia, Capovilla, Giuseppe, Crichiutti, Giovanni, Gambardella, Antonio, Belcastro, Vincenzo, Bianchi, Amedeo, Yalçın, Destina, Dizdarer, Gulsen, Arslan, Kezban, Yapıcı, Zuhal, Kuşcu, Demet, Leu, Costin, Heggeli, Kristin, Willis, Joseph, Langley, Sarah R, Jorgensen, Andrea, Srivastava, Prashant, Rau, Sarah, Hengsbach, Christian, and Sonsma, Anja C.M.
- Subjects
0301 basic medicine ,GAMMA-2-SUBUNIT ,[SDV]Life Sciences [q-bio] ,GABRA5 ,Clinical Neurology ,15Q13.3 MICRODELETIONS ,ABSENCE EPILEPSY ,SEQUENCE DATA ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,3124 Neurology and psychiatry ,03 medical and health sciences ,Epilepsy ,0302 clinical medicine ,Genetic variation ,medicine ,EPILEPTIC ENCEPHALOPATHIES ,Exome ,Exome sequencing ,ComputingMilieux_MISCELLANEOUS ,Genetic association ,Genetics ,RISK ,Science & Technology ,FEBRILE SEIZURES ,Neurology & Neurosurgery ,biology ,3112 Neurosciences ,1103 Clinical Sciences ,MOUSE MODEL ,medicine.disease ,ASSOCIATION ANALYSIS ,030104 developmental biology ,DE-NOVO MUTATIONS ,Cohort ,biology.protein ,Neurology (clinical) ,Human medicine ,Neurosciences & Neurology ,1109 Neurosciences ,Life Sciences & Biomedicine ,030217 neurology & neurosurgery ,Cohort study - Abstract
BACKGROUND: Genetic generalised epilepsy is the most common type of inherited epilepsy. Despite a high concordance rate of 80% in monozygotic twins, the genetic background is still poorly understood. We aimed to investigate the burden of rare genetic variants in genetic generalised epilepsy.METHODS: For this exome-based case-control study, we used three different genetic generalised epilepsy case cohorts and three independent control cohorts, all of European descent. Cases included in the study were clinically evaluated for genetic generalised epilepsy. Whole-exome sequencing was done for the discovery case cohort, a validation case cohort, and two independent control cohorts. The replication case cohort underwent targeted next-generation sequencing of the 19 known genes encoding subunits of GABAA receptors and was compared to the respective GABAA receptor variants of a third independent control cohort. Functional investigations were done with automated two-microelectrode voltage clamping in Xenopus laevis oocytes.FINDINGS: Statistical comparison of 152 familial index cases with genetic generalised epilepsy in the discovery cohort to 549 ethnically matched controls suggested an enrichment of rare missense (Nonsyn) variants in the ensemble of 19 genes encoding GABAA receptors in cases (odds ratio [OR] 2·40 [95% CI 1·41-4·10]; pNonsyn=0·0014, adjusted pNonsyn=0·019). Enrichment for these genes was validated in a whole-exome sequencing cohort of 357 sporadic and familial genetic generalised epilepsy cases and 1485 independent controls (OR 1·46 [95% CI 1·05-2·03]; pNonsyn=0·0081, adjusted pNonsyn=0·016). Comparison of genes encoding GABAA receptors in the independent replication cohort of 583 familial and sporadic genetic generalised epilepsy index cases, based on candidate-gene panel sequencing, with a third independent control cohort of 635 controls confirmed the overall enrichment of rare missense variants for 15 GABAA receptor genes in cases compared with controls (OR 1·46 [95% CI 1·02-2·08]; pNonsyn=0·013, adjusted pNonsyn=0·027). Functional studies for two selected genes (GABRB2 and GABRA5) showed significant loss-of-function effects with reduced current amplitudes in four of seven tested variants compared with wild-type receptors.INTERPRETATION: Functionally relevant variants in genes encoding GABAA receptor subunits constitute a significant risk factor for genetic generalised epilepsy. Examination of the role of specific gene groups and pathways can disentangle the complex genetic architecture of genetic generalised epilepsy.FUNDING: EuroEPINOMICS (European Science Foundation through national funding organisations), Epicure and EpiPGX (Sixth Framework Programme and Seventh Framework Programme of the European Commission), Research Unit FOR2715 (German Research Foundation and Luxembourg National Research Fund).
- Published
- 2018
- Full Text
- View/download PDF
10. Shorter telomere length is associated with COVID-19 hospitalization and with persistence of radiographic lung abnormalities.
- Author
-
Retuerto M, Lledó A, Fernandez-Varas B, Guerrero-López R, Usategui A, Lalueza A, García-García R, Mancebo E, Paz-Artal E, Sastre L, Perona R, and Pablos JL
- Abstract
Background: Age and comorbidity are the main determinants of COVID-19 outcome. Shorter leukocyte telomere length (TL), a hallmark of biological aging, has been associated with worse COVID-19 outcomes. We sought to determine TL in patients with severe COVID-19 requiring hospitalization to analyze whether clinical outcomes and post-COVID-19 manifestations are associated with shorter TL., Results: We analyzed 251 patients with PCR-confirmed COVID-19, hospitalized in the first months of the pandemics. We determined TL in PBL at admission by quantitative-PCR (qPCR) analysis in patients. A healthy cohort from the same area with a similar age range (n = 169) was used to calculate TL Z-scores. After hospital discharge, 144 COVID-19 survivors were followed-up for persistent COVID-19 manifestations. A second TL determination was performed in a smaller group of 63 patients 1 year later and compared with baseline TL. Hospitalized COVID-19 patients had a decreased baseline age-adjusted TL Z-score compared to the reference group. No differences in Z-scores were observed in patients with different COVID-19 outcomes, classified as WHO ordinal scores. In 144 patients, followed for a median of 8 months, post-COVID manifestations were not associated to differences in TL. Persistence of lung radiographic abnormalities was associated with shorter baseline TL. In patients with a second TL determination, further telomere shortening (TS) was observed in 35% and telomere lengthening in 49%. Patients with further TS had suffered a more severe disease., Conclusion: Shorter TL is associated with COVID-19 hospitalization but not with hospital clinical outcomes nor with persistent post-COVID-19 manifestations. Delayed resolution of radiographic lung abnormalities was also associated with shorter TL., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
11. Comparison of Colorectal Cancer Stem Cells and Oxaliplatin-Resistant Cells Unveils Functional Similarities.
- Author
-
Rodríguez-Fanjul V, Guerrero-López R, Fernández-Varas B, Perona R, Sastre-Perona A, and Sastre L
- Subjects
- Drug Resistance, Neoplasm, Female, Humans, Male, Neoplastic Stem Cells pathology, Oxaliplatin pharmacology, Oxaliplatin therapeutic use, Colorectal Neoplasms pathology, Neoplasm Recurrence, Local
- Abstract
Colorectal cancer is the second most common cancer in women, the third in men, and an important cause of cancer-related mortality. Recurrence and the development of chemotherapy resistance are major hindrances for patients' treatment. The presence of cancer stem cells with chemotherapy resistance able to generate proliferating tumor cells contributes to tumor recurrence and resistance. In addition, tumor cells can develop chemoresistance through adaptation mechanisms. In this article, cancer stem cells were isolated from HT29 and SW620 colorectal cancer cell lines. Oxaliplatin resistance was induced by a single drug treatment simulating the usual guidelines of patient treatment. A comparison of these two populations showed similarities since cancer stem cells presented increased oxaliplatin resistance, and resistant cells contained an increased number of cancer stem cells. Cancer stem cells isolated from resistant cells showed increased oxaliplatin resistance. Cell invasion capacity and epithelial-mesenchymal transition were increased both in cancer stem cells and oxaliplatin-resistant cells. mRNA expression analysis showed that both cell types shared a significant proportion of commonly regulated genes. In summary, the data presented indicate that colorectal cancer stem cells and oxaliplatin-resistant cells are highly related cell populations that might have interesting implications in the development of tumor recurrence and resistance to chemotherapy.
- Published
- 2022
- Full Text
- View/download PDF
12. GSE4-loaded nanoparticles a potential therapy for lung fibrosis that enhances pneumocyte growth, reduces apoptosis and DNA damage.
- Author
-
Pintado-Berninches L, Montes-Worboys A, Manguan-García C, Arias-Salgado EG, Serrano A, Fernandez-Varas B, Guerrero-López R, Iarriccio L, Planas L, Guenechea G, Egusquiaguirre SP, Hernandez RM, Igartua M, Luis Pedraz J, Cortijo J, Sastre L, Molina-Molina M, and Perona R
- Subjects
- Alveolar Epithelial Cells drug effects, Alveolar Epithelial Cells metabolism, Collagen drug effects, Collagen metabolism, Humans, Lung metabolism, Oxidative Stress drug effects, Peptides pharmacology, Apoptosis drug effects, Bleomycin pharmacology, DNA Damage drug effects, Lung drug effects, Nanoparticles therapeutic use
- Abstract
Idiopathic pulmonary fibrosis is a lethal lung fibrotic disease, associated with aging with a mean survival of 2-5 years and no curative treatment. The GSE4 peptide is able to rescue cells from senescence, DNA and oxidative damage, inflammation, and induces telomerase activity. Here, we investigated the protective effect of GSE4 expression in vitro in rat alveolar epithelial cells (AECs), and in vivo in a bleomycin model of lung fibrosis. Bleomycin-injured rat AECs, expressing GSE4 or treated with GSE4-PLGA/PEI nanoparticles showed an increase of telomerase activity, decreased DNA damage, and decreased expression of IL6 and cleaved-caspase 3. In addition, these cells showed an inhibition in expression of fibrotic markers induced by TGF-β such as collagen-I and III among others. Furthermore, treatment with GSE4-PLGA/PEI nanoparticles in a rat model of bleomycin-induced fibrosis, increased telomerase activity and decreased DNA damage in proSP-C cells. Both in preventive and therapeutic protocols GSE4-PLGA/PEI nanoparticles prevented and attenuated lung damage monitored by SPECT-CT and inhibited collagen deposition. Lungs of rats treated with bleomycin and GSE4-PLGA/PEI nanoparticles showed reduced expression of α-SMA and pro-inflammatory cytokines, increased number of pro-SPC-multicellular structures and increased DNA synthesis in proSP-C cells, indicating therapeutic efficacy of GSE4-nanoparticles in experimental lung fibrosis and a possible curative treatment for lung fibrotic patients., (© 2021 The Authors. The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology.)
- Published
- 2021
- Full Text
- View/download PDF
13. α-Secretase nonsense mutation (ADAM10 Tyr167*) in familial Alzheimer's disease.
- Author
-
Agüero P, Sainz MJ, García-Ayllón MS, Sáez-Valero J, Téllez R, Guerrero-López R, Pérez-Pérez J, Jiménez-Escrig A, and Gómez-Tortosa E
- Subjects
- ADAM10 Protein genetics, Amyloid beta-Peptides, Amyloid beta-Protein Precursor genetics, Biomarkers, Codon, Nonsense, Humans, Membrane Proteins genetics, Peptide Fragments, Alzheimer Disease genetics, Amyloid Precursor Protein Secretases genetics
- Abstract
Background: The disintegrin metalloproteinase 10 (ADAM10) is the main α-secretase acting in the non-amyloidogenic processing of APP. Some ADAM10 gene variants have been associated with higher susceptibility to develop late-onset AD, though clear clinical-genetic correlates remain elusive., Methods: Clinical-genetic and biomarker study of a first family with early- and late-onset AD associated with a nonsense ADAM10 mutation (p.Tyr167*). CSF analysis included AD core biomarkers, as well as Western blot of ADAM10 species and sAPPα and sAPPβ peptides. We evaluate variant's pathogenicity, pattern of segregation, and further screened for the p.Tyr167* mutation in 197 familial AD cases from the same cohort, 200 controls from the same background, and 274 AD cases from an independent Spanish cohort., Results: The mutation was absent from public databases and segregated with the disease. CSF Aβ42, total tau, and phosphorylated tau of affected siblings were consistent with AD. The predicted haploinsufficiency effect of the nonsense mutation was supported by (a) ADAM10 isoforms in CSF decreased around 50% and (b) 70% reduction of CSF sAPPα peptide, both compared to controls, while sAPPβ levels remained unchanged. Interestingly, sporadic AD cases had a similar decrease in CSF ADAM10 levels to that of mutants, though their sAPPα and sAPPβ levels resembled those of controls. Therefore, a decreased sAPPα/sAPPβ ratio was an exclusive feature of mutant ADAM10 siblings. The p.Tyr167* mutation was not found in any of the other AD cases or controls screened., Conclusions: This family illustrates the role of ADAM10 in the amyloidogenic process and the clinical development of the disease. Similarities between clinical and biomarker findings suggest that this family could represent a genetic model for sporadic late-onset AD due to age-related downregulation of α-secretase. This report encourages future research on ADAM10 enhancers.
- Published
- 2020
- Full Text
- View/download PDF
14. De novo truncating mutation in SCN1A as a cause of febrile seizures plus (FS+).
- Author
-
Jaimes A, Guerrero-López R, González-Giráldez B, and Serratosa JM
- Subjects
- Adolescent, Electroencephalography, Epilepsy, Generalized physiopathology, Female, Humans, Mutation, Phenotype, Seizures, Febrile physiopathology, Epilepsy, Generalized genetics, NAV1.1 Voltage-Gated Sodium Channel genetics, Seizures, Febrile genetics
- Abstract
SCN1A is one of the most relevant epilepsy genes. In general, de novo severe mutations, such as truncating mutations, lead to a classic form of Dravet syndrome (DS), while missense mutations are associated with both DS and milder phenotypes within the GEFS+ spectrum, however, these phenotype-genotype correlations are not entirely consistent. Case report. We report an 18-year-old woman with a history of recurrent febrile generalized tonic-clonic seizures (GTCS) starting at age four months and afebrile asymmetric GTCS and episodes of arrest, suggestive of focal impaired awareness seizures, starting at nine months. Her psychomotor development was normal. Sequencing of SCN1A revealed a heterozygous de novo truncating mutation (c.5734C>T, p.Arg1912X) in exon 26. Conclusion. Truncating mutations in SCN1A may be associated with milder phenotypes within the GEFS+ spectrum. Accordingly, SCN1A gene testing should be performed as part of the assessment for sporadic patients with mild phenotypes that fit within the GEFS+ spectrum, since the finding of a mutation has diagnostic, therapeutic and genetic counselling implications.
- Published
- 2020
- Full Text
- View/download PDF
15. Antibiotic resistance of Salmonella strains from layer poultry farms in central Ecuador.
- Author
-
Sánchez-Salazar E, Gudiño ME, Sevillano G, Zurita J, Guerrero-López R, Jaramillo K, and Calero-Cáceres W
- Subjects
- Animals, Bacterial Proteins genetics, Ecuador epidemiology, Farms, Microbial Sensitivity Tests, Salmonella classification, Salmonella genetics, Salmonella Infections, Animal epidemiology, Salmonella Infections, Animal microbiology, Serogroup, beta-Lactamases genetics, Anti-Bacterial Agents pharmacology, Drug Resistance, Bacterial drug effects, Drug Resistance, Bacterial genetics, Poultry microbiology, Salmonella drug effects, Salmonella isolation & purification
- Abstract
Aims: This study evaluated the antimicrobial resistance of Salmonella enterica strains from layer poultry farms in central Ecuador isolated during 2017. This geographical area is responsible for around 60% of total domestic egg production, yet, as of 2019, no reports had been published on the phenotypic and genotypic antibiotic resistance patterns of Salmonella in the layer poultry farms of this area., Methods and Results: Thirty-one isolates from layer poultry farms in central Ecuador obtained during 2017 were evaluated. The resistance profiles exhibited considerable differences in serovar and sample origin, grouping into nine clades by phenotype. S. Infantis strains were of the MDR phenotype in 94·4% of isolates. S. Typhimurium strains were of a reduced antimicrobial resistance phenotype and 50% showed resistance to one antimicrobial compound. One of the S. enterica nontyped strains had an MDR profile to 11 of the 20 antibiotics evaluated (eight groups). And the two remaining S. enterica nontyped strains showed resistance to two and three antibiotics respectively. The ESBL phenotype, which is resistant to clinically notable antibiotics such as ceftriaxone, ampicillin and cefepime, was observed only in S. Infantis (15/18). These strains harbour the emerging bla
CTX-M-65 gene, and co-harbour tetA and sul1 resistance genes in four strains. Additional β-lactamase genes, carbapenemase-producing genes (blaIMP, blaVIM , blaOXA48 , blaKPC , blaNDM ) and colistin-mobile resistance gene mcr-1 were not detected., Conclusions: The findings highlight the potential role of layer poultry farm environments in central Ecuador as reservoirs of MDR Salmonella strains., Significance and Impact of the Study: These results suggest the necessity of reinforcing biosecurity practices to reduce the probability of transmission of MDR Salmonella across the food chain., (© 2019 The Society for Applied Microbiology.)- Published
- 2020
- Full Text
- View/download PDF
16. Presence of tau astrogliopathy in frontotemporal dementia caused by a novel Grn nonsense (Trp2*) mutation.
- Author
-
Gómez-Tortosa E, Baradaran-Heravi Y, González Alvarez V, Sainz MJ, Prieto-Jurczynska C, Guerrero-López R, Agüero Rabes P, Van Broeckhoven C, van der Zee J, and Rábano Gutiérrez A
- Subjects
- Aged, Aged, 80 and over, Brain metabolism, Brain pathology, Female, Genes, Dominant genetics, Humans, Male, Middle Aged, Neurofibrillary Tangles genetics, Neurofibrillary Tangles metabolism, Tauopathies metabolism, Tauopathies pathology, Astrocytes metabolism, Astrocytes pathology, Codon, Nonsense genetics, Frontotemporal Dementia genetics, Genetic Association Studies, Progranulins genetics, Tauopathies genetics, tau Proteins metabolism
- Abstract
Frontotemporal lobar degeneration caused by GRN mutations is mainly associated with a TDP-43 type A proteinopathy. We present a family with autosomal dominant frontotemporal lobar degeneration caused by a novel GRN nonsense mutation (c.5G>A: p.Trp2*) in which the proband's brain also showed prominent glial tauopathy consistent with an aging-related tau astrogliopathy. Astrocytic tauopathy, 4R(+) and 3R(-) immunoreactive, was characterized by thorn-shaped astrocytes present in subpial, subependymal, and perivascular areas, and in gray matter; plus granular or fuzzy tau immunoreactivity in astrocytic processes in gray matter, either solitary or clustered in different regions. Some neurofibrillary tangles and pretangles, both 3R and 4R(+), were present in the medial temporal lobe but did not exhibit the characteristic distribution of Alzheimer's type pathology. This 4R-tau aging-related tau astrogliopathy is likely a co-occurring pathology, although an interaction between progranulin and tau proteins within the neurodegenerative process should not be ruled out., (Copyright © 2018 Elsevier Inc. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
17. Presence and diversity of Salmonella isolated from layer farms in central Ecuador.
- Author
-
Salazar GA, Guerrero-López R, Lalaleo L, Avilés-Esquivel D, Vinueza-Burgos C, and Calero-Cáceres W
- Subjects
- Animals, Chickens, Ecuador, Farms, Female, Salmonella genetics, Salmonella isolation & purification, Salmonella Infections, Animal
- Abstract
Background: Given the considerable role played by Salmonella in the incidence of food contamination, around the world, surveillance of this infection is prioritized by both food producers and health care authorities. Data remains insufficient concerning the prevalence of Salmonella in poultry systems in Ecuador and in Latin America in general. Methods: In this study, we evaluated the presence and diversity of Salmonella serovars in samples taken from 21 layer farms and backyard layers in central Ecuador during August-November 2017. Salmonella was isolated following standardized methods (ISO 6579) and the serovar determination was carried out by PCR. Results: A significant presence of Salmonella was detected in the 21 farms evaluated, with a frequency of 76% (95% confidence interval (CI): 53-92) in environmental surfaces, 33% (95%CI: 15-57) in pooled cloacal swabs from layer hens, 33% (95% CI: 13-59) on feed samples, and 10% (95%CI: 1-30) in backyard layer feces from traditional local markets. The dominant serovars detected were S. Infantis and S. Typhimurium. Conclusions: This study forms a basis for further surveillance of Salmonella serovars in layer farms in central Ecuador., Competing Interests: No competing interests were disclosed.
- Published
- 2019
- Full Text
- View/download PDF
18. Rare coding variants in genes encoding GABA A receptors in genetic generalised epilepsies: an exome-based case-control study.
- Author
-
May P, Girard S, Harrer M, Bobbili DR, Schubert J, Wolking S, Becker F, Lachance-Touchette P, Meloche C, Gravel M, Niturad CE, Knaus J, De Kovel C, Toliat M, Polvi A, Iacomino M, Guerrero-López R, Baulac S, Marini C, Thiele H, Altmüller J, Jabbari K, Ruppert AK, Jurkowski W, Lal D, Rusconi R, Cestèle S, Terragni B, Coombs ID, Reid CA, Striano P, Caglayan H, Siren A, Everett K, Møller RS, Hjalgrim H, Muhle H, Helbig I, Kunz WS, Weber YG, Weckhuysen S, Jonghe P, Sisodiya SM, Nabbout R, Franceschetti S, Coppola A, Vari MS, Kasteleijn-Nolst Trenité D, Baykan B, Ozbek U, Bebek N, Klein KM, Rosenow F, Nguyen DK, Dubeau F, Carmant L, Lortie A, Desbiens R, Clément JF, Cieuta-Walti C, Sills GJ, Auce P, Francis B, Johnson MR, Marson AG, Berghuis B, Sander JW, Avbersek A, McCormack M, Cavalleri GL, Delanty N, Depondt C, Krenn M, Zimprich F, Peter S, Nikanorova M, Kraaij R, van Rooij J, Balling R, Ikram MA, Uitterlinden AG, Avanzini G, Schorge S, Petrou S, Mantegazza M, Sander T, LeGuern E, Serratosa JM, Koeleman BPC, Palotie A, Lehesjoki AE, Nothnagel M, Nürnberg P, Maljevic S, Zara F, Cossette P, Krause R, and Lerche H
- Subjects
- Adolescent, Adult, Aged, Aged, 80 and over, Case-Control Studies, Child, Child, Preschool, Cohort Studies, Epilepsy, Generalized ethnology, Europe, Family Health, Female, Humans, Infant, Infant, Newborn, International Cooperation, Male, Middle Aged, Models, Molecular, Young Adult, Epilepsy, Generalized genetics, Genetic Predisposition to Disease genetics, Genetic Variation genetics, Receptors, GABA-A genetics, Exome Sequencing methods
- Abstract
Background: Genetic generalised epilepsy is the most common type of inherited epilepsy. Despite a high concordance rate of 80% in monozygotic twins, the genetic background is still poorly understood. We aimed to investigate the burden of rare genetic variants in genetic generalised epilepsy., Methods: For this exome-based case-control study, we used three different genetic generalised epilepsy case cohorts and three independent control cohorts, all of European descent. Cases included in the study were clinically evaluated for genetic generalised epilepsy. Whole-exome sequencing was done for the discovery case cohort, a validation case cohort, and two independent control cohorts. The replication case cohort underwent targeted next-generation sequencing of the 19 known genes encoding subunits of GABA
A receptors and was compared to the respective GABAA receptor variants of a third independent control cohort. Functional investigations were done with automated two-microelectrode voltage clamping in Xenopus laevis oocytes., Findings: Statistical comparison of 152 familial index cases with genetic generalised epilepsy in the discovery cohort to 549 ethnically matched controls suggested an enrichment of rare missense (Nonsyn) variants in the ensemble of 19 genes encoding GABAA receptors in cases (odds ratio [OR] 2·40 [95% CI 1·41-4·10]; pNonsyn =0·0014, adjusted pNonsyn =0·019). Enrichment for these genes was validated in a whole-exome sequencing cohort of 357 sporadic and familial genetic generalised epilepsy cases and 1485 independent controls (OR 1·46 [95% CI 1·05-2·03]; pNonsyn =0·0081, adjusted pNonsyn =0·016). Comparison of genes encoding GABAA receptors in the independent replication cohort of 583 familial and sporadic genetic generalised epilepsy index cases, based on candidate-gene panel sequencing, with a third independent control cohort of 635 controls confirmed the overall enrichment of rare missense variants for 15 GABAA receptor genes in cases compared with controls (OR 1·46 [95% CI 1·02-2·08]; pNonsyn =0·013, adjusted pNonsyn =0·027). Functional studies for two selected genes (GABRB2 and GABRA5) showed significant loss-of-function effects with reduced current amplitudes in four of seven tested variants compared with wild-type receptors., Interpretation: Functionally relevant variants in genes encoding GABAA receptor subunits constitute a significant risk factor for genetic generalised epilepsy. Examination of the role of specific gene groups and pathways can disentangle the complex genetic architecture of genetic generalised epilepsy., Funding: EuroEPINOMICS (European Science Foundation through national funding organisations), Epicure and EpiPGX (Sixth Framework Programme and Seventh Framework Programme of the European Commission), Research Unit FOR2715 (German Research Foundation and Luxembourg National Research Fund)., (Copyright © 2018 Elsevier Ltd. All rights reserved.)- Published
- 2018
- Full Text
- View/download PDF
19. SORL1 Variants in Familial Alzheimer's Disease.
- Author
-
Gómez-Tortosa E, Ruggiero M, Sainz MJ, Villarejo-Galende A, Prieto-Jurczynska C, Venegas Pérez B, Ordás C, Agüero P, Guerrero-López R, and Pérez-Pérez J
- Subjects
- Aged, Case-Control Studies, Female, Gene Frequency, Genetic Predisposition to Disease, Humans, Male, Middle Aged, Mutation, Polymorphism, Single Nucleotide, Siblings, Spain, Alzheimer Disease genetics, LDL-Receptor Related Proteins genetics, Membrane Transport Proteins genetics
- Abstract
The SORL1 gene encodes a protein involved in the amyloidogenic process, and its variants have been associated with Alzheimer's disease (AD) physiopathology. We screened for SORL1 variants in 124 familial (44 early- and 80 late-onset) dementia of Alzheimer type (DAT) cases. Nine potentially pathogenic changes (three not previously reported and six rare variants) were found in nine probands (7%). After screening the control population and siblings (presence in at least 1/200 controls and/or absence of segregation pattern), a causal relationship with the disease was considered unlikely in six variants and uncertain in one. The change Trp848Ter and a splice-site variant remained likely correlated with the disease. SORL1 mutations are present in 7% of our familial DAT cohort, though in most cases cannot be considered the direct cause of the disease.
- Published
- 2018
- Full Text
- View/download PDF
20. Molecular diagnosis of patients with epilepsy and developmental delay using a customized panel of epilepsy genes.
- Author
-
Ortega-Moreno L, Giráldez BG, Soto-Insuga V, Losada-Del Pozo R, Rodrigo-Moreno M, Alarcón-Morcillo C, Sánchez-Martín G, Díaz-Gómez E, Guerrero-López R, and Serratosa JM
- Subjects
- Child, Preschool, Developmental Disabilities genetics, Epilepsy genetics, Female, Humans, Infant, Newborn, Male, Developmental Disabilities diagnosis, Epilepsy diagnosis, Genetic Predisposition to Disease
- Abstract
Pediatric epilepsies are a group of disorders with a broad phenotypic spectrum that are associated with great genetic heterogeneity, thus making sequential single-gene testing an impractical basis for diagnostic strategy. The advent of next-generation sequencing has increased the success rate of epilepsy diagnosis, and targeted resequencing using genetic panels is the a most cost-effective choice. We report the results found in a group of 87 patients with epilepsy and developmental delay using targeted next generation sequencing (custom-designed Haloplex panel). Using this gene panel, we were able to identify disease-causing variants in 17 out of 87 (19.5%) analyzed patients, all found in known epilepsy-associated genes (KCNQ2, CDKL5, STXBP1, SCN1A, PCDH19, POLG, SLC2A1, ARX, ALG13, CHD2, SYNGAP1, and GRIN1). Twelve of 18 variants arose de novo and 6 were novel. The highest yield was found in patients with onset in the first years of life, especially in patients classified as having early-onset epileptic encephalopathy. Knowledge of the underlying genetic cause provides essential information on prognosis and could be used to avoid unnecessary studies, which may result in a greater diagnostic cost-effectiveness.
- Published
- 2017
- Full Text
- View/download PDF
21. Familial primary lateral sclerosis or dementia associated with Arg573Gly TBK1 mutation.
- Author
-
Gómez-Tortosa E, Van der Zee J, Ruggiero M, Gijselinck I, Esteban-Pérez J, García-Redondo A, Borrego-Hernández D, Navarro E, Sainz MJ, Pérez-Pérez J, Cruts M, Van Broeckhoven C, and Guerrero-López R
- Subjects
- Aged, Case-Control Studies, Europe, Female, Frontotemporal Dementia complications, Humans, Male, Middle Aged, Pedigree, Frontotemporal Dementia genetics, Motor Neuron Disease genetics, Motor Neuron Disease psychology, Mutation genetics, Protein Serine-Threonine Kinases genetics
- Abstract
Competing Interests: Competing interests: None declared.
- Published
- 2017
- Full Text
- View/download PDF
22. Pitfalls in genetic testing: the story of missed SCN1A mutations.
- Author
-
Djémié T, Weckhuysen S, von Spiczak S, Carvill GL, Jaehn J, Anttonen AK, Brilstra E, Caglayan HS, de Kovel CG, Depienne C, Gaily E, Gennaro E, Giraldez BG, Gormley P, Guerrero-López R, Guerrini R, Hämäläinen E, Hartmann C, Hernandez-Hernandez L, Hjalgrim H, Koeleman BP, Leguern E, Lehesjoki AE, Lemke JR, Leu C, Marini C, McMahon JM, Mei D, Møller RS, Muhle H, Myers CT, Nava C, Serratosa JM, Sisodiya SM, Stephani U, Striano P, van Kempen MJ, Verbeek NE, Usluer S, Zara F, Palotie A, Mefford HC, Scheffer IE, De Jonghe P, Helbig I, and Suls A
- Abstract
Background: Sanger sequencing, still the standard technique for genetic testing in most diagnostic laboratories and until recently widely used in research, is gradually being complemented by next-generation sequencing (NGS). No single mutation detection technique is however perfect in identifying all mutations. Therefore, we wondered to what extent inconsistencies between Sanger sequencing and NGS affect the molecular diagnosis of patients. Since mutations in SCN1A, the major gene implicated in epilepsy, are found in the majority of Dravet syndrome (DS) patients, we focused on missed SCN1A mutations., Methods: We sent out a survey to 16 genetic centers performing SCN1A testing., Results: We collected data on 28 mutations initially missed using Sanger sequencing. All patients were falsely reported as SCN1A mutation-negative, both due to technical limitations and human errors., Conclusion: We illustrate the pitfalls of Sanger sequencing and most importantly provide evidence that SCN1A mutations are an even more frequent cause of DS than already anticipated.
- Published
- 2016
- Full Text
- View/download PDF
23. Diversity of Cognitive Phenotypes Associated with C9ORF72 Hexanucleotide Expansion.
- Author
-
Gómez-Tortosa E, Prieto-Jurczynska C, Serrano S, Franco-Macías E, Olivié L, Gallego J, Guerrero-López R, Trujillo-Tiebas MJ, Ayuso C, García Ruiz P, Pérez-Pérez J, and Sainz MJ
- Subjects
- Adult, Age of Onset, Apolipoprotein E4 genetics, C9orf72 Protein, Family, Female, Follow-Up Studies, Frontotemporal Lobar Degeneration epidemiology, Genetic Association Studies, Genetic Predisposition to Disease, Genotyping Techniques, Humans, Male, Middle Aged, Prevalence, Spain epidemiology, Cognition, DNA Repeat Expansion, Frontotemporal Lobar Degeneration genetics, Frontotemporal Lobar Degeneration psychology, Proteins genetics
- Abstract
For diagnostic purposes, we screened for the C9ORF72 mutation in a) 162 FTLD cases, and b) 145 cases with other diagnoses but with some frontotemporal features or manifestations previously reported in C9 carriers. Ten cases (onset 50 to 75 years) harbored the expansion: seven had FTLD syndromes (4.3% of total, 11% of familial cases), and three (2%) had a different diagnosis. All positive cases had family history of dementia, psychiatric disease, or ALS, but only 20% of families with mixed FTLD/ALS phenotypes carried the expansion. Language impairment was the most common symptom, followed by behavioral changes, memory deficits, and parkinsonism. C9ORF72 mutation has a low frequency in our dementia series and very diverse clinical manifestations.
- Published
- 2016
- Full Text
- View/download PDF
24. Behavioral Evolution of Progressive Semantic Aphasia in Comparison with Nonfluent Aphasia.
- Author
-
Gómez-Tortosa E, Rigual R, Prieto-Jurczynska C, Mahillo-Fernández I, Guerrero-López R, Pérez-Pérez J, and Sainz MJ
- Subjects
- Aged, Atrophy, Delusions diagnosis, Depression diagnosis, Disease Progression, Female, Humans, Male, Middle Aged, Neuropsychological Tests, Psychomotor Agitation diagnosis, Retrospective Studies, Temporal Lobe, Aphasia, Primary Progressive psychology, Delusions etiology, Depression etiology, Primary Progressive Nonfluent Aphasia psychology, Psychomotor Agitation etiology
- Abstract
Background: Patients with primary progressive aphasia (PPA) usually develop significant behavioral disturbances with progression of the disease. We tested our clinical observation that development of disruptive agitation is more likely in semantic than in nonfluent PPA and examined which clinical variables could be associated with this behavior., Methods: We retrospectively analyzed neuropsychiatric scores and the need for behavioral treatments in semantic PPA (n = 41) and nonfluent PPA (n = 39) cases and compared first (1-3 years since the onset of symptoms) and last (5-13 years since the onset) evaluations. Clinical variables and laterality of temporal atrophy were associated with symptoms in semantic PPA cases., Results: The semantic PPA group developed more frequent (p = 0.03) and intense agitation (p = 0.0008) and had a greater need for antipsychotic drugs (p = 0.001) than the nonfluent PPA group. Presence of agitation was clearly associated with psychotic symptoms (delusions/hallucinations) but was not associated with gender, age at onset, duration of the disease, or laterality of temporal atrophy. In contrast, nonfluent PPA cases were more frequently depressed and treated with antidepressants (p = 0.0007). There were no differences in anxiety, irritability, apathy, perseverations, hyperorality, or abnormal motor behavior., Conclusions: Semantic PPA in advanced disease is frequently associated with agitation and psychotic symptoms with fewer mood symptoms, while nonfluent PPA maintains a high prevalence of depression. This implies different treatment and care and support needs for each group., (© 2015 S. Karger AG, Basel.)
- Published
- 2016
- Full Text
- View/download PDF
25. Uniparental disomy as a cause of spinal muscular atrophy and progressive myoclonic epilepsy: phenotypic homogeneity due to the homozygous c.125C>T mutation in ASAH1.
- Author
-
Giráldez BG, Guerrero-López R, Ortega-Moreno L, Verdú A, Carrascosa-Romero MC, García-Campos Ó, García-Muñozguren S, Pardal-Fernández JM, and Serratosa JM
- Subjects
- Adolescent, Chromosomes, Human, Pair 8, Female, Haplotypes, Homozygote, Humans, Muscular Atrophy, Spinal etiology, Mutation, Myoclonic Epilepsies, Progressive etiology, Phenotype, Acid Ceramidase genetics, Muscular Atrophy, Spinal genetics, Muscular Atrophy, Spinal physiopathology, Myoclonic Epilepsies, Progressive genetics, Myoclonic Epilepsies, Progressive physiopathology, Uniparental Disomy
- Abstract
Spinal muscular atrophy and progressive myoclonic epilepsy (SMAPME, OMIM#159950) is a rare autosomal recessive disorder characterized by the combination of progressive myoclonic epilepsy and muscular weakness due to lower motor neuron disease. Mutations in ASAH1, previously associated only to Farber disease, have been recently described in seven patients with SMAPME. A homozygous c.125C>T mutation was initially found in six patients with a clinical homogeneous phenotype. A heterozygous compound mutation found in an additional patient has broadened the clinical and genetic spectrum of clinical SMAPME. We report a new case of a 13-year-old girl with SMAPME with the homozygous ASAH1 c.125C>T mutation, unique in that it is due to paternal uniparental disomy. She experienced muscle weakness from the age of three due to lower motor neuron involvement that lead to severe handicap and onset in late childhood of a progressive myoclonic epilepsy. This clinical picture fully overlaps with that of previously reported patients with this mutation and supports our view that the clinical phenotype associated with the homozygous c.125C>T mutation constitutes a clinically homogenous and recognizable disease., (Copyright © 2014 Elsevier B.V. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
26. Mild Lafora disease: clinical, neurophysiologic, and genetic findings.
- Author
-
Ferlazzo E, Canafoglia L, Michelucci R, Gambardella A, Gennaro E, Pasini E, Riguzzi P, Plasmati R, Volpi L, Labate A, Gasparini S, Villani F, Casazza M, Viri M, Zara F, Minassian BA, Turnbull J, Serratosa JM, Guerrero-López R, Franceschetti S, and Aguglia U
- Subjects
- Adolescent, Adult, Electroencephalography, Female, Humans, Italy, Longitudinal Studies, Male, Middle Aged, Ubiquitin-Protein Ligases, Young Adult, Carrier Proteins genetics, Lafora Disease genetics, Lafora Disease physiopathology, Lafora Disease therapy, Mutation, Protein Tyrosine Phosphatases, Non-Receptor genetics
- Abstract
We report clinical, neurophysiologic, and genetic features of an Italian series of patients with Lafora disease (LD) to identify distinguishing features of those with a slowly progressive course. Twenty-three patients with LD (17 female; 6 male) were recruited. Mean age (± SD) at the disease onset was 14.5 ± 3.9 years and mean follow-up duration was 13.2 ± 8.0 years. NHLRC1 mutations were detected in 18 patients; EPM2A mutations were identified in 5. Patients who maintained >10 years gait autonomy were labeled as "mild" and were compared with the remaining LD patients with a typical course. Six of 23 patients were mild and presented significantly delay in the age at onset, lower neurologic disability score at 4 years after the onset, less severe seizure phenotype, lower probability of showing both photoparoxysmal response on electroencephalography (EEG) and giant somatosensory evoked potentials, as compared to patients with typical LD. However, in both mild and typical LD patients, EEG showed disorganization of background activity and frequent epileptiform abnormalities. Mild LD patients had NHLRC1 mutations and five of six carried homozygous or compound heterozygous D146N mutation. This mutation was found in none of the patients with typical LD. The occurrence of specific NHLRC1 mutations in patients with mild LD should be taken into account in clinical practice for appropriate management and counseling., (Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.)
- Published
- 2014
- Full Text
- View/download PDF
27. Atypical course in individuals from Spanish families with benign familial infantile seizures and mutations in the PRRT2 gene.
- Author
-
Guerrero-López R, Ortega-Moreno L, Giráldez BG, Alarcón-Morcillo C, Sánchez-Martín G, Nieto-Barrera M, Gutiérrez-Delicado E, Gómez-Garre P, Martínez-Bermejo A, García-Peñas JJ, and Serratosa JM
- Subjects
- Adolescent, Adult, Child, Child, Preschool, Epilepsy, Benign Neonatal diagnosis, Female, Follow-Up Studies, Humans, Male, Middle Aged, Pedigree, Spain epidemiology, Young Adult, Epilepsy, Benign Neonatal epidemiology, Epilepsy, Benign Neonatal genetics, Membrane Proteins genetics, Mutation genetics, Nerve Tissue Proteins genetics
- Abstract
A benign prognosis has been claimed in benign familial infantile seizures (BFIS). However, few studies have assessed the long-term evolution of these patients. The objective of this study is to describe atypical courses and presentations in BFIS families with mutations in PRRT2 gene. We studied clinically affected individuals from five BFIS Spanish families. We found mutations in PRRT2 in all 5 families. A non-BFIS phenotype or an atypical BFIS course was found in 9/25 (36%) patients harbouring a PRRT2 mutation. Atypical features included neonatal onset, mild hemiparesis, learning difficulties or mental retardation, and recurrent seizures during adulthood. We also report a novel PRRT2 mutation (c.121_122delGT). In BFIS families an atypical phenotype was present in a high percentage of the patients. These findings expand the clinical spectrum of PRRT2 mutations including non-benign epileptic phenotypes., (Copyright © 2014 Elsevier B.V. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF
28. Hyperexcitability and epileptic seizures in a model of frontotemporal dementia.
- Author
-
García-Cabrero AM, Guerrero-López R, Giráldez BG, Llorens-Martín M, Avila J, Serratosa JM, and Sánchez MP
- Subjects
- Animals, Brain metabolism, Brain pathology, Calcium-Binding Proteins metabolism, Convulsants toxicity, DNA-Binding Proteins, Disease Models, Animal, Electroencephalography, Epilepsy chemically induced, Frontotemporal Dementia pathology, Glial Fibrillary Acidic Protein metabolism, Humans, Mice, Mice, Transgenic, Microfilament Proteins metabolism, Pentylenetetrazole toxicity, Polycomb-Group Proteins, Transcription Factors metabolism, Video Recording, Epilepsy etiology, Frontotemporal Dementia complications, Frontotemporal Dementia genetics, tau Proteins genetics
- Abstract
Epileptic seizures are more common in patients with Alzheimer disease than in the general elderly population. Abnormal forms of hyperphosphorylated tau accumulate in Alzheimer disease and other tauopathies. Aggregates of tau are also found in patients with epilepsy and in experimental models of epilepsy. We report here the analysis of epileptic activity and neuropathological correlates of a transgenic line over-expressing human mutant tau, a model of frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17). The FTDP-17 model displays spontaneous epileptic activity and seizures with spike-wave complexes in the EEG, and a higher sensitivity to the GABAA receptor antagonist pentylenetetrazol (PTZ) when compared to age-matched controls, showing a notably increased seizure length and a shorter latency to develop severe seizures. FTDP-17 human tau mutants also display lower convulsive thresholds and higher lethality after PTZ injections. Astrocytosis and activated microglia are prominent in the hippocampus and other brain regions of young FTDP-17 mice where the human mutant tau transgene is expressed, before the appearance of hyperphosphorylated tau aggregates in these structures. FTDP-17 human mutant tau over-expression produces epilepsy and increased GABAA receptor-mediated hyperexcitability in the absence of Aβ pathology. Although aggregates of hyperphosphorylated tau have been observed in patients with epilepsy and in different chemically and electrically generated models of epilepsy, the FTDP-17 tau mutant analyzed here is the first model of genetically modified tau that presents with epilepsy. This model may represent a valuable tool to assay novel treatments in order to reduce tau pathology, a potential factor which may be involved in the development of epileptic seizures in dementia and other neurodegenerative diseases., (Copyright © 2013 Elsevier Inc. All rights reserved.)
- Published
- 2013
- Full Text
- View/download PDF
29. Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes.
- Author
-
Lemke JR, Lal D, Reinthaler EM, Steiner I, Nothnagel M, Alber M, Geider K, Laube B, Schwake M, Finsterwalder K, Franke A, Schilhabel M, Jähn JA, Muhle H, Boor R, Van Paesschen W, Caraballo R, Fejerman N, Weckhuysen S, De Jonghe P, Larsen J, Møller RS, Hjalgrim H, Addis L, Tang S, Hughes E, Pal DK, Veri K, Vaher U, Talvik T, Dimova P, Guerrero López R, Serratosa JM, Linnankivi T, Lehesjoki AE, Ruf S, Wolff M, Buerki S, Wohlrab G, Kroell J, Datta AN, Fiedler B, Kurlemann G, Kluger G, Hahn A, Haberlandt DE, Kutzer C, Sperner J, Becker F, Weber YG, Feucht M, Steinböck H, Neophythou B, Ronen GM, Gruber-Sedlmayr U, Geldner J, Harvey RJ, Hoffmann P, Herms S, Altmüller J, Toliat MR, Thiele H, Nürnberg P, Wilhelm C, Stephani U, Helbig I, Lerche H, Zimprich F, Neubauer BA, Biskup S, and von Spiczak S
- Subjects
- Amino Acid Substitution, Epilepsies, Partial diagnosis, Female, Humans, Male, Models, Molecular, Mutation, Missense, Pedigree, Protein Conformation, Receptors, N-Methyl-D-Aspartate chemistry, Receptors, N-Methyl-D-Aspartate metabolism, Epilepsies, Partial genetics, Mutation, Receptors, N-Methyl-D-Aspartate genetics
- Abstract
Idiopathic focal epilepsy (IFE) with rolandic spikes is the most common childhood epilepsy, comprising a phenotypic spectrum from rolandic epilepsy (also benign epilepsy with centrotemporal spikes, BECTS) to atypical benign partial epilepsy (ABPE), Landau-Kleffner syndrome (LKS) and epileptic encephalopathy with continuous spike and waves during slow-wave sleep (CSWS). The genetic basis is largely unknown. We detected new heterozygous mutations in GRIN2A in 27 of 359 affected individuals from 2 independent cohorts with IFE (7.5%; P = 4.83 × 10(-18), Fisher's exact test). Mutations occurred significantly more frequently in the more severe phenotypes, with mutation detection rates ranging from 12/245 (4.9%) in individuals with BECTS to 9/51 (17.6%) in individuals with CSWS (P = 0.009, Cochran-Armitage test for trend). In addition, exon-disrupting microdeletions were found in 3 of 286 individuals (1.0%; P = 0.004, Fisher's exact test). These results establish alterations of the gene encoding the NMDA receptor NR2A subunit as a major genetic risk factor for IFE.
- Published
- 2013
- Full Text
- View/download PDF
30. Mutations in DEPDC5 cause familial focal epilepsy with variable foci.
- Author
-
Dibbens LM, de Vries B, Donatello S, Heron SE, Hodgson BL, Chintawar S, Crompton DE, Hughes JN, Bellows ST, Klein KM, Callenbach PM, Corbett MA, Gardner AE, Kivity S, Iona X, Regan BM, Weller CM, Crimmins D, O'Brien TJ, Guerrero-López R, Mulley JC, Dubeau F, Licchetta L, Bisulli F, Cossette P, Thomas PQ, Gecz J, Serratosa J, Brouwer OF, Andermann F, Andermann E, van den Maagdenberg AM, Pandolfo M, Berkovic SF, and Scheffer IE
- Subjects
- Adolescent, Adult, Animals, Case-Control Studies, Cells, Cultured, Child, Child, Preschool, Cohort Studies, Computational Biology, Epilepsies, Partial diagnosis, Female, Fluorescent Antibody Technique, GTPase-Activating Proteins, Genetic Linkage, Genotype, Humans, Infant, Male, Mice, Middle Aged, Neurons cytology, Neurons metabolism, Pedigree, Pluripotent Stem Cells cytology, Pluripotent Stem Cells metabolism, Young Adult, Epilepsies, Partial genetics, Exome genetics, Genetic Predisposition to Disease genetics, Guanine Nucleotide Exchange Factors genetics, Mutation genetics, Repressor Proteins genetics
- Abstract
The majority of epilepsies are focal in origin, with seizures emanating from one brain region. Although focal epilepsies often arise from structural brain lesions, many affected individuals have normal brain imaging. The etiology is unknown in the majority of individuals, although genetic factors are increasingly recognized. Autosomal dominant familial focal epilepsy with variable foci (FFEVF) is notable because family members have seizures originating from different cortical regions. Using exome sequencing, we detected DEPDC5 mutations in two affected families. We subsequently identified mutations in five of six additional published large families with FFEVF. Study of families with focal epilepsy that were too small for conventional clinical diagnosis with FFEVF identified DEPDC5 mutations in approximately 12% of families (10/82). This high frequency establishes DEPDC5 mutations as a common cause of familial focal epilepsies. Shared homology with G protein signaling molecules and localization in human neurons suggest a role of DEPDC5 in neuronal signal transduction.
- Published
- 2013
- Full Text
- View/download PDF
31. A new SCARB2 mutation in a patient with progressive myoclonus ataxia without renal failure.
- Author
-
Guerrero-López R, García-Ruiz PJ, Giráldez BG, Durán-Herrera C, Querol-Pascual MR, Ramírez-Moreno JM, Más S, and Serratosa JM
- Subjects
- Adult, Ataxia genetics, Female, Humans, Myoclonus diagnosis, Renal Insufficiency genetics, Sequence Analysis, DNA methods, Lysosomal Membrane Proteins genetics, Mutation genetics, Myoclonic Epilepsies, Progressive genetics, Myoclonus genetics, Receptors, Scavenger genetics, Renal Insufficiency complications
- Published
- 2012
- Full Text
- View/download PDF
32. Incidence of type 1 diabetes in Mexico: data from an institutional register 2000-2010.
- Author
-
Gómez-Díaz RA, Pérez-Pérez G, Hernández-Cuesta IT, Rodríguez-García Jdel C, Guerrero-López R, Aguilar-Salinas CA, and Wacher NH
- Subjects
- Adolescent, Child, Female, Humans, Incidence, Male, Mexico epidemiology, Young Adult, Diabetes Mellitus, Type 1 epidemiology
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.