1. Proactive selective attention across competition contexts.
- Author
-
Aguado-López B, Palenciano AF, Peñalver JMG, Díaz-Gutiérrez P, López-García D, Avancini C, Ciria LF, and Ruz M
- Subjects
- Humans, Male, Female, Young Adult, Adult, Brain physiology, Cues, Psychomotor Performance physiology, Judgment physiology, Attention physiology, Electroencephalography, Reaction Time physiology
- Abstract
Selective attention is a cognitive function that helps filter out unwanted information. Theories such as the biased competition model (Desimone & Duncan, 1995) explain how attentional templates bias processing towards targets in contexts where multiple stimuli compete for resources. However, it is unclear how the anticipation of different levels of competition influences the nature of attentional templates, in a proactive fashion. In this study, we used electroencephalography (EEG) to investigate how the anticipated demands of attentional selection (either high or low stimuli competition contexts) modulate target-specific preparatory brain activity and its relationship with task performance. To do so, participants performed a sex/gender judgment task in a cue-target paradigm where, depending on the block, target and distractor stimuli appeared simultaneously (high competition) or sequentially (low competition). Multivariate Pattern Analysis (MVPA) showed that, in both competition contexts, there was a preactivation of the target category to select, with a ramping-up profile at the end of the preparatory interval. However, cross-classification showed no generalization across competition conditions, suggesting different preparatory formats. Notably, time-frequency analyses showed differences between anticipated competition demands, with higher theta band power for high than low competition, which mediated the impact of subsequent stimuli competition on behavioral performance. Overall, our results show that, whereas preactivation of the internal templates associated with the category to select are engaged in advance in high and low competition contexts, their underlying neural patterns differ. In addition, these codes could not be associated with theta power, suggesting that they reflect different preparatory processes. The implications of these findings are crucial to increase our understanding of the nature of top-down processes across different contexts., Competing Interests: Declaration of competing interest The authors declare no competing interests., (Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF