1. Optimizing TinyML: The Impact of Reduced Data Acquisition Rates for Time Series Classification on Microcontrollers
- Author
-
Samanta, Riya, Saha, Bidyut, Ghosh, Soumya K., and Roy, Ram Babu
- Subjects
Computer Science - Machine Learning - Abstract
Tiny Machine Learning (TinyML) enables efficient, lowcost, and privacy preserving machine learning inference directly on microcontroller units (MCUs) connected to sensors. Optimizing models for these constrained environments is crucial. This paper investigates how reducing data acquisition rates affects TinyML models for time series classification, focusing on resource-constrained, battery operated IoT devices. By lowering data sampling frequency, we aim to reduce computational demands RAM usage, energy consumption, latency, and MAC operations by approximately fourfold while maintaining similar classification accuracies. Our experiments with six benchmark datasets (UCIHAR, WISDM, PAMAP2, MHEALTH, MITBIH, and PTB) showed that reducing data acquisition rates significantly cut energy consumption and computational load, with minimal accuracy loss. For example, a 75\% reduction in acquisition rate for MITBIH and PTB datasets led to a 60\% decrease in RAM usage, 75\% reduction in MAC operations, 74\% decrease in latency, and 70\% reduction in energy consumption, without accuracy loss. These results offer valuable insights for deploying efficient TinyML models in constrained environments.
- Published
- 2024