319 results on '"G. Corradi"'
Search Results
2. Design and qualification of the Mu2e electromagnetic calorimeter electronic system
- Author
-
S. Ceravolo, F. Colao, E. Diociaiuti, G. Corradi, S. Di Falco, S. Donati, S. Fiore, A. Ferrari, A. Gioiosa, S. Giovannella, F. Happacher, M. Martini, S. Miscetti, L. Morescalchi, S. Muller, D. Paesani, D. Pasciuto, E. Pedreschi, F. Raffaelli, A. Saputi, I. Sarra, E. Sanzani, F. Spinella, and A. Taffara
- Subjects
Radiation hardness ,Nuclear and High Energy Physics ,Front-end electronics ,Calorimetry ,Instrumentation - Abstract
The Mu2e experiment [1] at Fermilab will search for the neutrino-less coherent conversion of a muon into an electron in the field of a nucleus. Mu2e detectors comprise a strawtracker, an electromagnetic calorimeter and a veto for cosmic rays. The calorimeter employs 1348 Cesium Iodide crystals readout by silicon photomultipliers and fast front-end and digitization electronics. The front-end electronics consists of two discrete chips for each crystal. These provide the amplification and shaping stage,linear regulation of the SiPM bias voltage and monitoring. The SiPM and front-end control electronics is implemented in a bat- tery of mezzanine boards each equipped with an ARM processor that controls a group of 20 Amp-HV chips, distributes the low voltage and the high-voltage reference values, sets and reads back the locally regulated voltages. The elec- tronic is hosted in crates located on the external surface of calorimeter disks. The crates also host the waveform digitizer board (DIRAC) that performs dig- itization of the front end signals and transmit the digitized data to the Mu2e DAQ. Calorimeter electronic is hosted inside the cryostat and it must substain very high radiation and magnetic field so it was necessary to fully qualify it. The constraints on the calorimeter front-end and readout electronics, the design technological choices and the qualification tests will be reviewed.
- Published
- 2023
3. Design and construction status of the Mu2e crystal calorimeter
- Author
-
Daniele Paesani, C. Bloise, S. Ceravolo, F. Cervelli, F. Colao, M. Cordelli, G. Corradi, S. DiFalco, E. Diociaiuti, S. Donati, C. Ferrari, R. Gargiulo, A. Gioiosa, S. Giovannella, V. Giusti, D. Hampai, F. Happacher, M. Martini, S. Miscetti, L. Morescalchi, D. Pasciuto, E. Pedreschi, F. Raffaelli, E. Sanzani, I. Sarra, A. Saputi, F. Spinella, and A. Taffara
- Published
- 2022
4. An automated QC station for the characterization of the Mu2e Calorimeter Readout Units
- Author
-
Elisa Sanzani, C. Bloise, S. Ceravolo, F. Cervelli, F. Colao, M. Cordelli, G. Corradi, S. Di Falco, E. Diociaiuti, S. Donati, C. Ferrari, R. Gargiulo, A. Gioiosa, S. Giovannella, V. Giusti, D. Hampai, F. Happacher, M. Martini, S. Miscetti, L. Morescalchi, D. Paesani, D. Pasciuto, E. Pedreschi, F. Raffaelli, I. Sarra, A. Saputi, F. Spinella, and A. Taffara
- Published
- 2022
5. Análise do potencial de desenvolvimento do ecossistema empreendedor da cidade de Lorena no Brasil
- Author
-
Mariana G. Corradi and Marco A. Pereira
- Abstract
Um ecosistema emprendedor é constituido de diferentes atores que se relacionam para sustentar a atividade empreendedora em um local. Um estudo de caso foi feito a partir de nove diferentes categorias de atores visando analisar o potencial empreendedor da cidade de Lorena, Brasil. Apurou-se que o ecossistema da cidade encontra-se em fase embrionária devido a baixa articulação e integração entre os seus principais atores, mas com bom potencial de desenvolvimento.
- Published
- 2020
6. Development and construction status of the Mu2e electromagnetic calorimeter mechanical structures
- Author
-
N. Atanov, V. Baranov, L. Borrel, C. Bloise, J. Budagov, S. Ceravolo, F. Cervelli, F. Colao, M. Cordelli, G. Corradi, Y.I. Davydov, S. Di Falco, E. Diociaiuti, S. Donati, B. Echenard, C. Ferrari, A. Gioiosa, S. Giovannella, V. Giusti, V. Glagolev, F. Grancagnolo, D. Hampai, F. Happacher, D. Hitlin, D. Lin, M. Martini, S. Middleton, S. Miscetti, L. Morescalchi, D. Paesani, D. Pasciuto, E. Pedreschi, F. Porter, F. Raffaelli, A. Saputi, I. Sarra, F. Spinella, A. Taffara, G.F. Tassielli, V. Tereshchenko, Z. Usubov, I.I. Vasilyev, A. Zanetti, and R.Y. Zhu
- Subjects
Instrumentation ,Mathematical Physics - Abstract
The Mu2e experiment at Fermilab will search for the CLFV neutrino-less coherent conversion of a muon into an electron in the field of an aluminum nucleus. The observation of this process would be the evidence of physics beyond the Standard Model. Mu2e comprises a straw-tracker, an electromagnetic calorimeter and an external veto for cosmic rays. The calorimeter provides electron identification, a fast trigger and aids track reconstruction. It is a state-of-the-art crystal calorimeter and employs 1340 pure CsI crystals readout by UV-extended SiPM and fast electronics. The design consists of two identical annular disks positioned at the relative distance of 70 cm downstream the target.The hostile Mu2e conditions (total ionizing dose of 12 krad and a neutron fluence of 5 × 1010 n/cm2 @ 1 MeVeq (Si)/y, 1 T magnetic field and vacuum level of 10−4 Torr) posed tight constraints on the mechanical structures and materials choice. The support structure of the two crystal matrices employs two aluminum hollow rings and parts made of open-cell vacuum-compatible carbon fiber. SiPMs and front-end electronics for each crystal are assembled in one mechanical unit inserted in a machined copper holder. The units are supported by a plate made of vacuum-compatible material. The plate integrates the cooling system made of a network of copper lines flowing a low temperature fluid and placed in thermal contact with the copper holders. The DAQ is hosted in aluminum crates positioned on the lateral surface of the disks. The crates also integrate the DAQ electronics cooling system. We review the constraints on the calorimeter structures design, the development of all the structural components, including the simulations that have determined the materials and technological choices and the specifications of the cooling station, components production and quality assurance tests, the procedures for detector assembly, transportation and installation in the experimental area.
- Published
- 2022
7. Electronic readout characterisation of a new soft X-ray diagnostic for burning plasma
- Author
-
S. Cancelli, A. Muraro, E. Perelli Cippo, A. Abba, G. Corradi, G. Grosso, G. Gorini, M.H. Kushoro, F. Murtas, O. Putignano, J. Scionti, D. Tagnani, M. Tardocchi, G. Croci, Cancelli, S, Muraro, A, Perelli Cippo, E, Abba, A, Corradi, G, Grosso, G, Gorini, G, Kushoro, M, Murtas, F, Putignano, O, Scionti, J, Tagnani, D, Tardocchi, M, and Croci, G
- Subjects
X-ray detector ,Gaseous detector ,Micropattern gaseous detectors (MSGC, GEM, THGEM, RETHGEM, MHSP, MICROPIC, MICROMEGAS, InGrid, etc.) ,Instrumentation ,Mathematical Physics - Abstract
In fusion plasma scenario, soft X-rays are important tools to study impurities inside plasma. However state-of-the-art silicon detectors cannot survive for long time to the heavy damages due to harsh conditions in tokamaks. GEM detectors are a good alternative thanks to their resilience to radiation damage. In this paper, a GEM detector coupled with new dedicated electronic readout based on GEMINI chip is described. In particular, the detector response has been studied comparing the well established PH method and the ToT method implemented in GEMINI. The results indicate the possibility of using this electronic readout to do soft X-ray spectroscopy measurements in the energy range up to about 10–20 keV.
- Published
- 2022
8. Design and Performance of Data Acquisition and Control System for the Muon g-2 Laser Calibration
- Author
-
G. Piacentino, P. Di Meo, Fabrizio Marignetti, A. Nath, Dariush Hampai, G. Pauletta, Claudio Ferrari, D. Cauz, A. Anastasio, Marin Karuza, M. Incagli, Giovanni Cantatore, A. Gioiosa, R. Di Stefano, A. Driutti, Franco Bedeschi, A. Lusiani, A. Boiano, G. Di Sciascio, G. Venanzoni, M. Iacovacci, S. Mastroianni, G. Corradi, C. Gabbanini, A. Fioretti, L. Santi, Sultan B. Dabagov, Mastroianni, S., Anastasio, A., Bedeschi, F., Boiano, A., Cantatore, G., Cauz, D., Corradi, G., Dabagov, S., Di Meo, P., Driutti, A., Di Sciascio, G., Di Stefano, R., Ferrari, C., Fioretti, A., Gabbanini, C., Gioiosa, A., Hampai, D., Iacovacci, M., Incagli, M., Karuza, M., Lusiani, A., Marignetti, F., Nath, A., Pauletta, G., Piacentino, G. M., Santi, L., and Venanzoni, G.
- Subjects
Calibration system ,data acquisition (DAQ) and control ,field-programmable gate array (FPGA) ,Nuclear and High Energy Physics ,Signal processing ,010308 nuclear & particles physics ,business.industry ,Computer science ,Interface (computing) ,01 natural sciences ,Data acquisition ,Nuclear Energy and Engineering ,Gate array ,0103 physical sciences ,Calibration ,Systems design ,Fermilab ,Electrical and Electronic Engineering ,business ,Field-programmable gate array ,Computer hardware - Abstract
The Muon g-2 Experiment at Fermilab (E989) will measure the muon magnetic anomaly with unprecedented precision (0.14 ppm), which yields a factor of 4 improvement with respect to the previous measurements at Brookhaven National Laboratory (BNL) (E821). To achieve this goal, the relative response of each calorimeter channel must be calibrated and monitored at a level better than $10^{-3}$ in the time window of the muon fill. The calibration system uses a laser source and photodetectors. The data acquisition (DAQ) of the system is designed around two field-programmable gate array (FPGA)-based boards and a custom crate bus. The front-end board manages the photodetector operation and signal processing and performs a first-level data concentration task. Up to 12 FPGA boards can be housed in a 6U crate. A readout master controls the boards, implements event-building functionalities, manages the monitoring interface, and facilitates calibration and debugging tasks. A gigabit-ethernet interface is used to transfer data to the on-line farm for storage and further processing. Presently, the system is working at Fermi National Accelerator Laboratory (FNAL). In this article, we present the DAQ system design, run control user interface, and system evaluation.
- Published
- 2020
9. A Low Noise Front End for the Belle II Forward Electromagnetic Calorimeter Upgrade
- Author
-
Alberto Aloisio, Antonio Budano, M. Galasso, D. Tagnani, G. Corradi, P. Branchini, Branchini, P., Budano, A., Galasso, M., Tagnani, D., Aloisio, A., and Corradi, G.
- Subjects
Nuclear and High Energy Physics ,Physics::Instrumentation and Detectors ,Preamplifier ,02 engineering and technology ,Voltage regulator ,01 natural sciences ,Noise (electronics) ,Front and back ends ,Analog processing circuit ,Data acquisition ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,Electronic engineering ,Electrical and Electronic Engineering ,Nuclear and High Energy Physic ,Physics ,010308 nuclear & particles physics ,business.industry ,020208 electrical & electronic engineering ,Detector ,Electrical engineering ,electronic circuit ,Avalanche photodiode ,bipolar transistor circuit ,Upgrade ,Nuclear Energy and Engineering ,High Energy Physics::Experiment ,business - Abstract
The Belle II experiment will operate at the SuperKEKB e+ e− collider, designed to reach a top luminosity of $8 \times 10^{35}$ at the $\Upsilon $ (4s) resonance. The high background environment of the accelerator poses serious challenges to the design of the detector. In particular, the Belle II collaboration is developing an ambitious upgrade program that involves the forward electromagnetic calorimeter. We will use pure CsI crystals, since they have less scintillation time but unfortunately much lower light yield. The electromagnetic calorimeter upgrade is subject to the same detector constraints as the first design; an intense research and development program on photon-detectors and front-end electronics has been initiated by the Italian collaboration. Our preliminary results show that a readout chain using avalanche photodiodes (APDs) to match the detector constraints and a dedicated front-end card for the readout meet the Belle II collaboration requirements. In this paper, we will show the experimental setup and detail the main characteristics of the read-out and power distribution system since the front-end card hosts both a low noise preamplifier and a power regulator to set the single APD bias voltage. The main HV module has been developed for this purpose to deliver a low noise power distribution to the front-end cards. All the relevant parameters of the front-end system can be set and monitored via Ethernet using the Experimental Physics and Industrial Control System. Slow control and monitoring functions in Belle II are performed by a dedicated hardware. The platform has been designed as an uP-based service-oriented platform, capable to offer an integrated solution for all the needs of data acquisition, analysis, and network functions.
- Published
- 2017
10. Search forK+→π+νν‾at NA62
- Author
-
R. Volpe, G. Aglieri Rinella, R. Aliberti, F. Ambrosino, R. Ammendola, B. Angelucci, A. Antonelli, G. Anzivino, R. Arcidiacono, I. Azhinenko, S. Balev, M. Barbanera, J. Bendotti, A. Biagioni, L. Bician, C. Biino, A. Bizzeti, T. Blazek, A. Blik, B. Bloch-Devaux, V. Bolotov, V. Bonaiuto, M. Boretto, M. Bragadireanu, D. Britton, G. Britvich, M.B. Brunetti, D. Bryman, F. Bucci, F. Butin, E. Capitolo, C. Capoccia, T. Capussela, A. Cassese, A. Catinaccio, A. Cecchetti, A. Ceccucci, P. Cenci, V. Cerny, C. Cerri, B. Checcucci, O. Chikilev, S. Chiozzi, R. Ciaranfi, G. Collazuol, A. Conovaloff, P. Cooke, P. Cooper, G. Corradi, E. Cortina Gil, F. Costantini, F. Cotorobai, A. Cotta Ramusino, D. Coward, G. D'Agostini, J. Dainton, P. Dalpiaz, H. Danielsson, J. Degrange, N. De Simone, D. Di Filippo, L. Di Lella, S. Di Lorenzo, N. Dixon, N. Doble, B. Dobrich, V. Duk, V. Elsha, J. Engelfried, T. Enik, N. Estrada, V. Falaleev, R. Fantechi, V. Fascianelli, L. Federici, S. Fedotov, M. Fiorini, J. Fry, J. Fu, A. Fucci, L. Fulton, S. Gallorini, S. Galeotti, E. Gamberini, L. Gatignon, G. Georgiev, A. Gianoli, M. Giorgi, S. Giudici, L. Glonti, A. Goncalves Martins, F. Gonnella, E. Goudzovski, R. Guida, E. Gushchin, F. Hahn, B. Hallgren, H. Heath, F. Herman, T. Husek, O. Hutanu, D. Hutchcroft, L. Iacobuzio, E. Iacopini, E. Imbergamo, O. Jamet, P. Jarron, E. Jones, T. Jones, K. Kampf, J. Kaplon, V. Kekelidze, S. Kholodenko, G. Khoriauli, A. Khotyantsev, A. Khudyakov, Yu. Kiryushin, A. Kleimenova, K. Kleinknecht, A. Kluge, M. Koval, V. Kozhuharov, M. Krivda, Z. Kucerova, Yu. Kudenko, J. Kunze, G. Lamanna, G. Latino, C. Lazzeroni, G. Lehmann-Miotto, R. Lenci, M. Lenti, E. Leonardi, P. Lichard, R. Lietava, L. Litov, R. Lollini, D. Lomidze, A. Lonardo, M. Lupi, N. Lurkin, K. McCormick, D. Madigozhin, G. Maire, C. Mandeiro, I. Mannelli, G. Mannocchi, A. Mapelli, F. Marchetto, R. Marchevski, S. Martellotti, P. Massarotti, K. Massri, P. Matak, E. Maurice, A. Mefodev, E. Menichetti, E. Minucci, M. Mirra, M. Misheva, N. Molokanova, J. Morant, M. Morel, M. Moulson, S. Movchan, D. Munday, M. Napolitano, I. Neri, F. Newson, A. Norton, M. Noy, G. Nuessle, T. Numao, V. Obraztsov, A. Ostankov, S. Padolski, R. Page, V. Palladino, G. Paoluzzi, C. Parkinson, E. Pedreschi, M. Pepe, F. Perez Gomez, M. Perrin-Terrin, L. Peruzzo, P. Petrov, F. Petrucci, R. Piandani, M. Piccini, D. Pietreanu, J. Pinzino, I. Polenkevich, L. Pontisso, Yu. Potrebenikov, D. Protopopescu, F. Raffaelli, M. Raggi, P. Riedler, A. Romano, P. Rubin, G. Ruggiero, V. Russo, V. Ryjov, A. Salamon, G. Salina, V. Samsonov, C. Santoni, G. Saracino, F. Sargeni, V. Semenov, A. Sergi, M. Serra, A. Shaikhiev, S. Shkarovskiy, I. Skillicorn, D. Soldi, A. Sotnikov, V. Sugonyaev, M. Sozzi, T. Spadaro, F. Spinella, R. Staley, A. Sturgess, P. Sutcliffe, N. Szilasi, D. Tagnani, S. Trilov, M. Valdata-Nappi, P. Valente, M. Vasile, T. Vassilieva, B. Velghe, M. Veltri, S. Venditti, P. Vicini, M. Vormstein, H. Wahl, R. Wanke, P. Wertelaers, A. Winhart, R. Winston, B. Wrona, O. Yushchenko, M. Zamkovsky, and A. Zinchenko
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Large Hadron Collider ,Meson ,010308 nuclear & particles physics ,Physics beyond the Standard Model ,NA62 experiment ,01 natural sciences ,Measure (mathematics) ,Nuclear physics ,Quality (physics) ,0103 physical sciences ,010306 general physics - Abstract
Among the meson decays, K → π ν ν ‾ are the cleanest environment, from the theoretical point of view, where to search for new physics effects. The NA62 Experiment at CERN SPS aims to measure the BR ( K + → π + ν ν ‾ ) with a 10% precision by the end of 2018. It has been commissioned with technical runs in 2014 and 2015, and some preliminary results of the detector performances and quality of data are here reported.
- Published
- 2017
11. Peer Review #2 of 'Symmetry preference in shapes, faces, flowers and landscapes (v0.2)'
- Author
-
G Corradi
- Subjects
Combinatorics ,Symmetry (geometry) ,Preference ,Mathematics - Published
- 2019
12. Muon g-2 calibration system data flow
- Author
-
S. Ceravolo, D. Moricciani, G. Piacentino, G. Corradi, A. Lusiani, O. Escalante, N. Raha, S. Di Falco, Claudio Ferrari, S. Donati, Gianluca Gagliardi, S. Mastroianni, Franco Bedeschi, P. Di Meo, Saverio Avino, G. Venanzoni, A. Boiano, A. Fioretti, D. Cauz, A. Anastasi, G. Pauletta, L. Santi, R. Di Stefano, Dariush Hampai, A. Nath, Giovanni Cantatore, A. Gioiosa, A. Anastasio, M. Iacovacci, Marin Karuza, S.B. Dabagov, C. Gabbanini, G. Di Sciascio, M. W. Smith, M. Incagli, A. Driutti, Fabrizio Marignetti, Anastasi, A., Anastasio, A., Avino, S., Bedeschi, F., Boiano, A., Cantatore, G., Cauz, D., Ceravolo, S., Corradi, G., Dabagov, S., Di Falco, S., Di Meo, P., Donati, S., Driutti, A., Di Sciascio, G., Di Stefano, R., Escalante, O., Ferrari, C., Fioretti, A., Gabbanini, C., Gagliardi, G., Gioiosa, A., Hampai, D., Iacovacci, M., Incagli, M., Karuza, M., Lusiani, A., Marignetti, F., Mastroianni, S., Moricciani, D., Nath, A., Pauletta, G., Piacentino, G. M., Raha, N., Santi, L., Smith, M. W., and Venanzoni, G.
- Subjects
Nuclear and High Energy Physics ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Laser calibration, DAQ, Monitoring system, muon: magnetic moment, laser, data acquisition, programming, electronics: design, control system, signal processing ,Change control board ,01 natural sciences ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,Software ,Data acquisition ,Control theory ,0103 physical sciences ,Calibration ,Fermilab ,Instrumentation ,Nuclear and High Energy Physic ,Physics ,010308 nuclear & particles physics ,business.industry ,DAQ ,Laser calibration ,Monitoring system ,Process (computing) ,Data flow diagram ,Laser calibration, DAQ, Monitoring system ,business ,Computer hardware ,Laser calibration, Monitoring system, DAQ - Abstract
In the Muon g-2 Experiment at Fermilab, a calibration apparatus based on a set of laser sources and a distribution system has been designed and implemented by the INFN group. The light pulses are read by specific photo-detectors, whose signals are digitized by custom electronics modules designed to match the experimental requirements. The data frames of each module are transmitted to a controller board that performs the event-building process and transfers the reconstructed data to the online farm. In this work we present the architecture and data flow of the acquisition system that depends on the laser calibration program defined inside the Laser Control board. Experimental results on the overall system performances, also including the software processes running both at controller and farm level will be described.
- Published
- 2019
13. The Mu2e calorimeter: Quality assurance of production crystals and SiPMs
- Author
-
M. Martini, Ren-Yuan Zhu, G. Tassielli, Z. Usubov, E. Pedreschi, G. Corradi, D. G. Hitlin, D. Caiulo, V. Glagolev, F. Spinella, F. Cervelli, I. Sarra, F. Happacher, S. Miscetti, M. Cordelli, R. Donghia, V. Tereshchenko, F. Grancagnolo, N. Atanov, E. Diociaiuti, S. Donati, Gianantonio Pezzullo, I. I. Vasilyev, S. Giovannella, Yu.I. Davydov, F. Colao, B. Echenard, F. Raffaelli, A. Saputi, S. Di Falco, J. Budagov, Luca Morescalchi, M. Ricci, T. S. Miyashita, P. Murat, F. C. Porter, V. A. Baranov, Atanov, N., Baranov, V., Budagov, J., Caiulo, D., Cervelli, F., Colao, F., Cordelli, M., Corradi, G., Davydov, Yu. I., Di Falco, S., Diociaiuti, E., Donati, S., Donghia, R., Echenard, B., Giovannella, S., Glagolev, V., Grancagnolo, F., Happacher, F., Hitlin, D. G., Martini, M., Miscetti, S., Miyashita, T., Morescalchi, L., Murat, P., Pedreschi, E., Pezzullo, G., Porter, F., Raffaelli, F., Ricci, M., Saputi, A., Sarra, I., Spinella, F., Tassielli, G., Tereshchenko, V., Usubov, Z., Vasilyev, I. I., and Zhu, R. Y.
- Subjects
Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,01 natural sciences ,High Energy Physics - Experiment ,030218 nuclear medicine & medical imaging ,Crystal ,High Energy Physics - Experiment (hep-ex) ,03 medical and health sciences ,0302 clinical medicine ,Silicon photomultiplier ,0103 physical sciences ,Mu2e ,Instrumentation ,Physics ,Mu2e, electromagnetic calorimeter, crystal calorimeter ,Calorimeter (particle physics) ,010308 nuclear & particles physics ,business.industry ,Instrumentation and Detectors (physics.ins-det) ,Technical specifications ,3. Good health ,Cathode ray ,Optoelectronics ,business ,Quality assurance - Abstract
The Mu2e calorimeter is composed of two disks each containing 1348 pure CsI crystals, each crystal read out by two arrays of 6x6 mm2 monolithic SiPMs. The experimental requirements have been translated in a series of technical specifications for both crystals and SiPMs. Quality assurance tests, on first crystal and then SiPM production batches, confirm the performances of preproduction samples previously assembled in a calorimeter prototype and tested with an electron beam. The production yield is sufficient to allow the construction of a calorimeter of the required quality in the expected times., Comment: 2 pages, 2 figures, 14th meeting on Advanced Detectors
- Published
- 2019
- Full Text
- View/download PDF
14. The calibration system of the Muon g-2 experiment
- Author
-
M. Incagli, A. Driutti, Dariush Hampai, Franco Bedeschi, N. Raha, Fabrizio Marignetti, A. Fioretti, A. Nath, A. Lusiani, G. Corradi, L. Santi, D. Moricciani, G. Piacentino, Marin Karuza, S. Mastroianni, A. Basti, D. Cauz, A. Gioiosa, S. Donati, M. Sorbara, Giovanni Cantatore, O. Escalante, G. Venanzoni, S. Di Falco, S.B. Dabagov, Melanie Ann Smith, G. Di Sciascio, C. Gabbanini, G. Pauletta, M. Iacovacci, Claudio Ferrari, R. Di Stefano, Driutti, A., Basti, A., Bedeschi, F., Cantatore, G., Cauz, D., Corradi, G., Dabagov, S., Di Falco, S., Di Sciascio, G., Di Stefano, R., Donati, S., Escalante, O., Ferrari, C., Fioretti, A., Gabbanini, C., Gioiosa, A., Hampai, D., Iacovacci, M., Incagli, M., Karuza, M., Lusiani, A., Marignetti, F., Mastroianni, S., Moricciani, D., Nath, A., Pauletta, G., Piacentino, G. M., Raha, N., Santi, L., Smith, M., Sorbara, M., and Venanzoni, G.
- Subjects
Nuclear and High Energy Physics ,Physics::Instrumentation and Detectors ,Electromagnetic calorimeter ,Laser system ,Muon g-2 ,Calibration methods ,Optics ,01 natural sciences ,law.invention ,Nuclear physics ,law ,0103 physical sciences ,Calibration ,Calibration method ,Fermilab ,010306 general physics ,Instrumentation ,Nuclear and High Energy Physic ,Physics ,Muon ,Anomalous magnetic dipole moment ,010308 nuclear & particles physics ,Calibration methods, Electromagnetic calorimeter, Laser system, Muon g-2, Optics ,Electromagnetic calorimeter, Laser system, Muon g-2, Calibration methods, Optics ,Laser ,Calorimeter ,Optic ,High Energy Physics::Experiment ,Beam (structure) ,Storage ring - Abstract
The Muon g –2 experiment at Fermilab (E989) plans to measure the muon anomalous magnetic moment to a precision of 140 parts per billion (ppb), which corresponds to a total uncertainty of 1 . 6 × 1 0 − 10 . To achieve this level of precision the experiment must detect more than 1 . 8 × 1 0 11 decay positrons by using the 24 calorimeters distributed around the muon storage ring. Each calorimeter consists of 54 Pb F 2 crystals read out by SiPMs. The response of each of the 1296 channels must be calibrated and monitored to keep uncertainties due to gain fluctuations at the sub-per mil level in the time interval corresponding to one beam fill ( 700 μ s ) and at the sub-percent level on longer time scales. These requirements are much more demanding than those needed by most high energy physics experiments. This paper presents a novel laser-based calibration system that distributes light to all calorimeter cells, while allowing one to correct for laser intensity fluctuations and to monitor the distribution chain stability at unprecedented levels of accuracy. Results on the system performance during the first few months of stored muon operation in 2018 are also presented.
- Published
- 2019
- Full Text
- View/download PDF
15. Production and Quality Assurance of the Mu2e Calorimeter Silicon Photomultipliers
- Author
-
E. Pedreschi, G. Corradi, M. Cordelli, S. Miscetti, L. Lucchesi, S. Giovannella, M. Ricci, F. Cervelli, A. Saputi, Stefan E. Müller, S. Di Falco, R. Donghia, A. Ferrari, E. Diociaiuti, F. Raffaelli, Luca Morescalchi, D. Caiulo, F. Happacher, F. Spinella, D. Pasciuto, M. Martini, I. Sarra, S. Donati, and Gianantonio Pezzullo
- Subjects
History ,Mean time between failures ,Calorimeter (particle physics) ,010308 nuclear & particles physics ,Computer science ,business.industry ,Modular design ,01 natural sciences ,Computer Science Applications ,Education ,Reliability engineering ,Reliability (semiconductor) ,Silicon photomultiplier ,0103 physical sciences ,Mu2e ,010306 general physics ,business ,Quality assurance ,Dark current - Abstract
The Mu2e calorimeter consists of 1348 undoped CsI crystals coupled to two large area UV-extended Silicon Photomultipliers (SiPMs). A modular and custom SiPM layout, a 3×2 matrix of 6×6 mm2 monolithic SiPMs, has been developed to satisfy the Mu2e requirements. As well as ensuring the performances needed for the muon-to-electron conversion search, these photosensors have to guarantee a good reliability while operating maintenance-free in the Mu2e hostile environment: any failure can only be replaced during a long technical shut-down scheduled once a year. After testing prototypes from different vendors, we selected Hamamatsu and the final production of about 4000 pieces is now ongoing. A detailed Quality Assurance (QA) program is then mandatory to minimize the risk of an unexpected further degradation in the performances. The QA process for each photosensor includes a first visual inspection and the subsequent characterization of each of its monolithic cells by means of an automatized test station, able to measure the breakdown voltage, the gain and the dark current. For each production batch (~300 pieces), 5 devices are exposed to a neutron fluency up to ~1.4×1011 1 MeV (Si) eq. n/cm2; others 15 devices are undergone an accelerated aging in order to verify the Mean Time To Failure (MTTF) of the batch. A summary of the QA and the results for the firsts 4 production batches are presented in the paper.
- Published
- 2019
- Full Text
- View/download PDF
16. Mu2e calorimeter readout system
- Author
-
E. Pedreschi, J. Budagov, D. G. Hitlin, G. Polacco, F. Happacher, S. Miscetti, N. Atanov, S. Donati, M. Sozzi, M. Cordelli, Luca Baldini, I. I. Vasilyev, A. Saputi, Gianantonio Pezzullo, M. Ricci, Luigi Lazzeri, Ren-Yuan Zhu, S. Faetti, S. Giudici, S. Di Falco, Z. Usubov, T. S. Miyashita, I. Sarra, Luca Morescalchi, F. Grancagnolo, F. Colao, P. Murat, F. Cervelli, R. Donghia, B. Echenard, F. Spinella, G. Corradi, F. C. Porter, Fabrizio Cei, V. Tereshchenko, Donato Nicolo, F. Raffaelli, V. A. Baranov, D. Caiulo, S. Giovannella, Yu.I. Davydov, V. Glagolev, M. Martini, G. Tassielli, Francesco D'Errico, E. Diociaiuti, Atanov, N., Baranov, V., Baldini, L., Budagov, J., Caiulo, D., Cei, F., Cervelli, F., Colao, F., Cordelli, M., Corradi, G., Davydov, Yu. I., D'Errico, F., Di Falco, S., Diociaiuti, E., Donati, S., Donghia, R., Echenard, B., Faetti, S., Giovannella, S., Giudici, S., Glagolev, V., Grancagnolo, F., Happacher, F., Hitlin, D. G., Lazzeri, L., Martini, M., Miscetti, S., Miyashita, T., Morescalchi, L., Murat, P., Nicolò, D., Pedreschi, E., Pezzullo, G., Polacco, G., Porter, F., Raffaelli, F., Ricci, M., Saputi, A., Sarra, I., Sozzi, M., Spinella, F., Tassielli, G., Tereshchenko, V., Usubov, Z., Vasilyev, I. I., and Zhu, R. Y.
- Subjects
Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Mu2e calorimeter ,01 natural sciences ,Signal ,High Energy Physics - Experiment ,030218 nuclear medicine & medical imaging ,High Energy Physics - Experiment (hep-ex) ,03 medical and health sciences ,0302 clinical medicine ,Silicon photomultiplier ,0103 physical sciences ,Mu2e ,Waveform ,Instrumentation ,Digitizer ,Physics ,Front-end electronics ,Radiation tolerance ,Calorimeter (particle physics) ,010308 nuclear & particles physics ,business.industry ,Amplifier ,Linear regulator ,High voltage ,Instrumentation and Detectors (physics.ins-det) ,Optoelectronics ,business - Abstract
The Mu2e electromagnetic calorimeter is made of two disks of un-doped parallelepiped CsI crystals readout by SiPM. There are 674 crystals in one disk and each crystal is readout by an array of two SiPM. The readout electronics is composed of two types of modules: 1) the front-end module hosts the shaping amplifier and the high voltage linear regulator; since one front-end module is interfaced to one SiPM, a total of 2696 modules are needed for the entire calorimeter; 2) a waveform digitizer provides a further level of amplification and digitizes the SiPM signal at the sampling frequency of $200\ \text{M}\text{Hz}$ with 12-bits ADC resolution; since one board digitizes the data received from 20 SiPMs, a total of 136 boards are needed. The readout system operational conditions are hostile: ionization dose of $20\ \text{krads}$, neutron flux of $10^{12}\ \mathrm{n}(1\ \text{MeVeq})/\text{cm}^2$, magnetic field of $1\ \text{T}$ and in vacuum level of $10^{-4}\ \text{Torr}$. A description of the readout system and qualification tests is reported.
- Published
- 2019
- Full Text
- View/download PDF
17. The monitoring electronics of the laser calibration system in the Muon g-2 experiment
- Author
-
A. Gioiosa, Gianluca Gagliardi, G. Corradi, A. Nath, M. Incagli, Claudio Ferrari, D. Moricciani, G. Di Sciascio, Saverio Avino, A. Driutti, G. Pauletta, S. Ceravolo, G. Piacentino, S. Donati, A. Anastasio, O. Escalante, M. Iacovacci, D. Cauz, Marin Karuza, N. Raha, M. W. Smith, Fabrizio Marignetti, A. Boiano, G. Venanzoni, S. Di Falco, A. Fioretti, Giovanni Cantatore, Sultan B. Dabagov, A. Anastasi, R. Di Stefano, C. Gabbanini, L. Santi, S. Mastroianni, Franco Bedeschi, A. Lusiani, Dariush Hampai, S. Di Meo, Anastasi, A., Anastasio, A., Avino, S., Bedeschi, F., Boiano, A., Cantatore, G., Cauz, D., Ceravolo, S., Corradi, G., Dabagov, S., Di Falco, S., Di Meo, S., Donati, S., Driutti, A., Di Sciascio, G., Di Stefano, R., Escalante, O., Ferrari, C., Fioretti, A., Gabbanini, C., Gagliardi, G., Gioiosa, A., Hampai, D., Iacovacci, M., Incagli, M., Karuza, M., Lusiani, A., Marignetti, F., Mastroianni, S., Moricciani, D., Nath, A., Pauletta, G., Piacentino, G. M., Raha, N., Santi, L., Smith, M. W., and Venanzoni, G.
- Subjects
Calorimetry ,DAQ ,Front-end ,Laser calibration ,Nuclear and High Energy Physics ,Physics::Instrumentation and Detectors ,Instrumentation ,01 natural sciences ,Calorimetry, Laser calibration, Front-end, DAQ ,030218 nuclear medicine & medical imaging ,law.invention ,03 medical and health sciences ,0302 clinical medicine ,Data acquisition ,Optics ,law ,0103 physical sciences ,Calibration ,Fermilab ,Nuclear and High Energy Physic ,Physics ,Muon ,010308 nuclear & particles physics ,business.industry ,Magnetic storage ,Laser ,Calorimeter ,High Energy Physics::Experiment ,business - Abstract
The new Muon g-2 experiment at Fermilab (E989) will measure the muon anomaly a μ = (g μ -2)/2 to an uncertainty of 16 x 10−11 (0.14 ppm). The experiment is running with a positive muon beam. The decay positrons are detected by 24 electromagnetic calorimeters placed on the inner radius of the magnetic storage ring. As the gain fluctuation of each calorimeter channel must be corrected to a few parts in 104, a state-of-art laser calibration system has been realized which provides short laser pulses to the calorimeters. The monitoring of these light signals is done by specific photo-detectors read by a specialized Monitoring Electronics, which is organized in devoted crates and performs the full data acquisition of the calibration signals starting from pre-amplification, then digitization and finally transfer of the information. Here we describe few key elements of the whole system, namely the single readout channel of the Monitoring Board.
- Published
- 2019
18. Characterization of a 5 <tex-math notation='LaTeX'>$5 \times 5$</tex-math> LYSO Matrix Calorimeter Prototype
- Author
-
V. Tereshchenko, M. Cordelli, V. V. Glagolev, G. Tassielli, P. Ott, E. Dané, D. G. Hitlin, G. Corradi, S. Miscettti, M. Martini, S. Giovannella, Yu.I. Davydov, S.R. Soleti, A. Saputi, V. A. Baranov, Luca Morescalchi, F. Happacher, Gianantonio Pezzullo, N. Atanov, T. S. Miyashita, Andy Thomas, K. T. Flood, I. Sarra, and F. Colao
- Subjects
Physics ,Nuclear and High Energy Physics ,Photon ,010308 nuclear & particles physics ,Resolution (electron density) ,Electron ,Characterization (mathematics) ,01 natural sciences ,Lyso ,Calorimeter ,Nuclear physics ,Matrix (mathematics) ,Nuclear Energy and Engineering ,0103 physical sciences ,Electrical and Electronic Engineering ,Atomic physics ,010306 general physics ,Energy (signal processing) - Abstract
In this paper, we present measurements of the energy and the time resolution of the Lutetium–Yttrium Oxyorthosilicate (LYSO) calorimeter prototype for the Mu2e experiment. The prototype calorimeter matrix consisted of 25, $\hbox{3}\,\hbox{$\times$}\, \hbox{3}\,\hbox{$\times$}\, \hbox{130\ mm}^3$ , LYSO crystals readout by $10\ \times 10\ \hbox{mm}^2$ Hamamatsu APDs. The prototype has been tested both with the tagged photon beam at MAMI, Mainz, Germany, and with the ${e^ -}$ beam of BTF, Frascati. The energy of particles used ranges between 61.3 and 187.1 MeV (80–130 MeV) for photon (electron) beams. While the MAMI data shows a negligible beam energy spread, we observe a 3%–5% contribution related to the beam in BTF sample. After correcting this effect, we obtain a global energy dependence of the energy resolution described by the formula ${\sigma _{E}}/{{E}_{{\rm {dep}}}}= {a}/\sqrt {{{E}_{{\rm {dep}}}}/{\hbox{GeV}}} \oplus {b}$ , with ${a} = ({0.59} \pm {0.12})\%$ and ${b} = ({3.63} \pm {0.21})\% $ . The simulation is in good agreement with data if we add an additional contribution due to the intrinsic LYSO fluctuation of 2.6%. We present also the measurements of the time resolution. The measurements have been performed using the ${e^ -}$ beam BTF in the energy range from 100 to 400 MeV. A resolution of ( ${161} \pm {3}$ ) ps at 100 MeV has been achieved. The energy dependence of the resolution has been fitted with following parametrization: ${\sigma _{\rm t}}{\rm (E)} = {a}/\sqrt {{E}/{\hbox{GeV}}} \oplus {b}$ , where the stochastic term and the constant term are determined to be ${a} = ({50} \pm {1})$ ps and ${b} = ({40} \pm {3})$ ps, respectively.
- Published
- 2016
19. Prospects forK+→π+νν‾observation at CERN in NA62
- Author
-
G. Khoriauli, G. Aglieri Rinella, R. Aliberti, F. Ambrosino, B. Angelucci, A. Antonelli, G. Anzivino, R. Arcidiacono, I. Azhinenko, S. Balev, J. Bendotti, A. Biagioni, C. Biino, A. Bizzeti, T. Blazek, A. Blik, B. Bloch-Devaux, V. Bolotov, V. Bonaiuto, M. Bragadireanu, D. Britton, G. Britvich, F. Bucci, F. Butin, E. Capitolo, C. Capoccia, T. Capussela, V. Carassiti, N. Cartiglia, A. Cassese, A. Catinaccio, A. Cecchetti, A. Ceccucci, P. Cenci, V. Cerny, C. Cerri, B. Checcucci, O. Chikilev, R. Ciaranfi, G. Collazuol, A. Conovaloff, P. Cooke, P. Cooper, G. Corradi, E. Cortina Gil, F. Costantini, A. Cotta Ramusino, D. Coward, G. D'Agostini, J. Dainton, P. Dalpiaz, H. Danielsson, J. Degrange, N. De Simone, D. Di Filippo, L. Di Lella, N. Dixon, N. Doble, V. Duk, V. Elsha, J. Engelfried, T. Enik, V. Falaleev, R. Fantechi, V. Fascianelli, L. Federici, M. Fiorini, J. Fry, A. Fucci, L. Fulton, S. Gallorini, E. Gamberini, L. Gatignon, G. Georgiev, A. Gianoli, M. Giorgi, S. Giudici, L. Glonti, A. Goncalves Martins, F. Gonnella, E. Goudzovski, R. Guida, E. Gushchin, F. Hahn, B. Hallgren, H. Heath, F. Herman, D. Hutchcroft, E. Iacopini, E. Imbergamo, O. Jamet, P. Jarron, K. Kampf, J. Kaplon, V. Karjavin, V. Kekelidze, S. Kholodenko, A. Khudyakov, Yu. Kiryushin, K. Kleinknecht, A. Kluge, M. Koval, V. Kozhuharov, M. Krivda, Y. Kudenko, J. Kunze, G. Lamanna, C. Lazzeroni, R. Lenci, M. Lenti, E. Leonardi, P. Lichard, R. Lietava, L. Litov, D. Lomidze, A. Lonardo, N. Lurkin, D. Madigozhin, G. Maire, A. Makarov, C. Mandeiro, I. Mannelli, G. Mannocchi, A. Mapelli, F. Marchetto, R. Marchevski, S. Martellotti, P. Massarotti, K. Massri, P. Matak, E. Maurice, E. Menichetti, G. Mila, E. Minucci, M. Mirra, M. Misheva, N. Molokanova, J. Morant, M. Morel, M. Moulson, S. Movchan, D. Munday, M. Napolitano, I. Neri, F. Newson, A. Norton, M. Noy, G. Nuessle, V. Obraztsov, A. Ostankov, S. Padolski, R. Page, V. Palladino, A. Pardons, C. Parkinson, E. Pedreschi, M. Pepe, F. Perez Gomez, M. Perrin-Terrin, L. Peruzzo, P. Petrov, F. Petrucci, R. Piandani, M. Piccini, D. Pietreanu, J. Pinzino, M. Pivanti, I. Polenkevich, I. Popov, Yu. Potrebenikov, D. Protopopescu, F. Raffaelli, M. Raggi, P. Riedler, A. Romano, P. Rubin, G. Ruggiero, V. Russo, V. Ryjov, A. Salamon, G. Salina, V. Samsonov, C. Santoni, E. Santovetti, G. Saracino, F. Sargeni, S. Schifano, V. Semenov, A. Sergi, M. Serra, S. Shkarovskiy, D. Soldi, A. Sotnikov, V. Sougonyaev, M. Sozzi, T. Spadaro, F. Spinella, R. Staley, M. Statera, P. Sutcliffe, N. Szilasi, D. Tagnani, M. Valdata-Nappi, P. Valente, M. Vasile, T. Vassilieva, B. Velghe, M. Veltri, S. Venditti, R. Volpe, M. Vormstein, H. Wahl, R. Wanke, P. Wertelaers, A. Winhart, R. Winston, B. Wrona, O. Yushchenko, M. Zamkovsky, and A. Zinchenko
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Large Hadron Collider ,010308 nuclear & particles physics ,Branching fraction ,Physics beyond the Standard Model ,0103 physical sciences ,Sensitivity (control systems) ,010306 general physics ,01 natural sciences ,Standard Model - Published
- 2016
20. Design and status of the Mu2e crystal calorimeter
- Author
-
Claudio Ferrari, G. Tassielli, S. Ceravolo, S. Donati, Gianantonio Pezzullo, Dariush Hampai, C. Bloise, Anna Zanetti, F. Spinella, R. Donghia, G. Corradi, V. Tereshchenko, S. Giovannella, Yu.I. Davydov, M. Cordelli, D. Pasciuto, F. Cervelli, I. Sarra, F. Colao, N. Atanov, F. Grancagnolo, E. Pedreschi, B. Echenard, S. Miscetti, P. Murat, D. G. Hitlin, F. C. Porter, V. A. Baranov, T. S. Miyashita, F. Happacher, M. Martini, F. Raffaelli, Ren-Yuan Zhu, V. Glagolev, I. I. Vasilyev, Luca Morescalchi, E. Diociaiuti, A. Saputi, S. Di Falco, J. Budagov, Z. Usubov, Atanov, N., Baranov, V., Bloise, C., Budagov, J., Cervelli, F., Ceravolo, S., Colao, F., Cordelli, M., Corradi, G., Davydov, Y. I., Di Falco, S., Diociaiuti, E., Donati, S., Donghia, R., Echenard, B., Ferrari, C., Giovannella, S., Glagolev, V., Grancagnolo, F., Hampai, D., Happacher, F., Hitlin, D., Martini, M., Miscetti, S., Miyashita, T., Morescalchi, L., Murat, P., Pasciuto, D., Pedreschi, E., Pezzullo, G., Porter, F., Raffaelli, F., Saputi, A., Sarra, I., Spinella, F., Tassielli, G., Tereshchenko, V., Usubov, Z., Vasilyev, I. I., Zanetti, A., and Zhu, R. Y.
- Subjects
Nuclear and High Energy Physics ,Physics::Instrumentation and Detectors ,Orders of magnitude (temperature) ,SiPMs ,Calorimetry ,7. Clean energy ,01 natural sciences ,Particle identification ,030218 nuclear medicine & medical imaging ,Mu2e ,Pure CsI crystals ,03 medical and health sciences ,0302 clinical medicine ,Silicon photomultiplier ,Optics ,0103 physical sciences ,Fermilab ,Instrumentation ,Pure CsI crystal ,Physics ,Muon ,Calorimeter (particle physics) ,010308 nuclear & particles physics ,business.industry ,Detector ,High Energy Physics::Experiment ,business - Abstract
The Mu2e experiment at Fermilab searches for the coherent neutrino-less muon to electron conversion in the Coulomb field of an aluminum nucleus. This charged-lepton flavor violating process is characterized by a distinctive signature of a mono-energetic electron ( ∼ 105 MeV/c) and its observation will be a clear signature of new physics beyond the Standard Model. The Mu2e goal is to improve by four orders of magnitude the search sensitivity with respect to the previous experiments. The Mu2e detector is composed of a tracker, an electromagnetic calorimeter and an external veto for cosmic rays. The calorimeter plays an important role in providing excellent particle identification capabilities, a fast online trigger filter while aiding the track reconstruction capabilities. It consists of 1348 pure CsI crystals divided in two annular disks, each one readout by two large area Silicon Photomultipliers. A large scale prototype has been tested with an electron beam , demonstrating to largely satisfy the Mu2e requirements. At the moment of writing, the crystals and SiPMs production phase is halfway through the completion. An overview of the characterization tests is reported, together with a description of the final mechanical and electronical design.
- Published
- 2020
21. The Mu2e Calorimeter Final Technical Design Report
- Author
-
G. Tassielli, S. Ceravolo, G. Corradi, M. Martini, Tommaso Radicioni, I. Sarra, P. Murat, Ren-Yuan Zhu, K. T. Flood, F. C. Porter, V. A. Baranov, R. Donghia, V. Tereshchenko, S. Miscetti, F. Grancagnolo, E. Dané, F. Spinella, M. Cordelli, Z. Usubov, D. G. Hitlin, N. Atanov, E. Diociaiuti, T. S. Miyashita, S. Giovannella, V. Glagolev, F. Raffaelli, D. Pasciuto, S. Donati, Y. I. Davydov, Gianantonio Pezzullo, F. Colao, B. Echenard, M. Ricci, F. Happacher, Luca Morescalchi, A. Saputi, S. Di Falco, J. Budagov, D. Tagnani, and F. Cervelli
- Subjects
Calorimeter (particle physics) ,APDS ,Computer science ,business.industry ,Electrical engineering ,Avalanche photodiode ,Technical design ,law.invention ,Silicon photomultiplier ,Backup ,law ,Mu2e ,Fermilab ,business - Abstract
Since the first version of the Mu2e TDR released at the beginning of 2015, the Mu2e Calorimeter system has undergone a long list of changes to arrive to its final design. These changes were primarily caused by two reasons: (i) the technology choice between the TDR proposed solution of BaF2 crystals readout with solar blind Avalanche Photodiodes (APDs) and the backup option of CsI crystals readout with Silicon Photomultipliers (SiPM) has been completed and (ii) the channels numbering, the mechanical system and the readout electronics were substantially modified while proceeding with engineering towards the final project. This document updates the description of the calorimeter system adding the most recent engineering drawings and tecnical progresses.
- Published
- 2018
22. Quality Assurance on Undoped CsI Crystals for the Mu2e Experiment
- Author
-
N. Atanov, V. Baranov, J. Budagov, D. Caiulo, F. Cervelli, F. Colao, M. Cordelli, G. Corradi, Yu. I. Davydov, S. Di Falco, E. Diociaiuti, S. Donati, R. Donghia, B. Echenard, S. Giovannella, V. Glagolev, F. Grancagnolo, F. Happacher, D. Hitlin, C. Hu, M. Martini, S. Miscetti, T. Miyashita, L. Morescalchi, P. Murat, E. Pedreschi, G. Pezzullo, F. Porter, F. Raffaelli, M. Ricci, A. Saputi, I. Sarra, F. Spinella, G. Tassielli, V. Tereshchenko, Z. Usubov, I. I. Vasilyev, L. Zhang, R. Y. Zhu, Atanov, N., Baranov, V., Budagov, J., Caiulo, D., Cervelli, F., Colao, F., Cordelli, M., Corradi, G., Davydov, Yu. I., Di Falco, S., Diociaiuti, E., Donati, S., Donghia, R., Echenard, B., Giovannella, S., Glagolev, V., Grancagnolo, F., Happacher, F., Hitlin, D., Hu, C., Martini, M., Miscetti, S., Miyashita, T., Morescalchi, L., Murat, P., Pedreschi, E., Pezzullo, G., Porter, F., Raffaelli, F., Ricci, M., Saputi, A., Sarra, I., Spinella, F., Tassielli, G., Tereshchenko, V., Usubov, Z., Vasilyev, I. I., Zhang, L., and Zhu, R. Y.
- Subjects
Nuclear and High Energy Physics ,Materials science ,Physics - Instrumentation and Detectors ,Silicon ,Physics::Instrumentation and Detectors ,Photoconductivity ,Crystals, Correlation, Photoconductivity, Energy resolution, Silicon carbide, Current measurement, Radiation effects ,chemistry.chemical_element ,FOS: Physical sciences ,Radiation effects ,Silicon carbide ,01 natural sciences ,Crystals ,030218 nuclear medicine & medical imaging ,High Energy Physics - Experiment ,Crystal ,03 medical and health sciences ,High Energy Physics - Experiment (hep-ex) ,0302 clinical medicine ,Ionization ,Condensed Matter::Superconductivity ,0103 physical sciences ,Mu2e ,Neutron ,Electrical and Electronic Engineering ,Energy resolution ,Radiation hardening ,Scintillation ,010308 nuclear & particles physics ,business.industry ,Instrumentation and Detectors (physics.ins-det) ,Current measurement ,3. Good health ,Calorimeter ,Correlation ,Nuclear Energy and Engineering ,chemistry ,Optoelectronics ,business - Abstract
The Mu2e experiment is constructing a calorimeter consisting of 1,348 undoped CsI crystals in two disks. Each crystal has a dimension of 34 x 34 x 200 mm, and is readout by a large area silicon PMT array. A series of technical specifications was defined according to physics requirements. Preproduction CsI crystals were procured from three firms: Amcrys, Saint-Gobain and Shanghai Institute of Ceramics. We report the quality assurance on crystal's scintillation properties and their radiation hardness against ionization dose and neutrons. With a fast decay time of 30 ns and a light output of more than 100 p.e./MeV measured with a bi-alkali PMT, undoped CsI crystals provide a cost-effective solution for the Mu2e experiment., Comment: 7 pages, 16 figures, published in IEEE TNS NS (2018)
- Published
- 2018
- Full Text
- View/download PDF
23. Design, Status and Perspective of the Mu2e Crystal Calorimeter
- Author
-
G. Pezzullo, N. Atanov, V. Baranov, J. Budagov, F. Cervelli, F. Colao, E. Diociaiuti, M. Cordelli, G. Corradi, E. Danè, Yu. Davydov, S. Donati, R. Donghia, S. Di Falco, B. Echenard, L. Morescalchi, S. Giovannella, V. Glagolev, F. Grancagnolo, F. Happacher, D. Hitlin, M. Martini, S. Miscetti, T. Miyashita, P. Murat, E. Pedreschi, F. Porter, F. Raffaelli, M. Ricci, A. Saputi, I. Sarra, F. Spinella, G. Tassielli, V. Tereshchenko, R. Y. Zhu, Pezzullo, G., Atanov, N., Baranov, V., Budagov, J., Cervelli, F., Colao, F., Diociaiuti, E., Cordelli, M., Corradi, G., Danè, E., Davydov, Yu., Donati, S., Donghia, R., Di Falco, S., Echenard, B., Morescalchi, L., Giovannella, S., Glagolev, V., Grancagnolo, F., Happacher, F., Hitlin, D., Martini, M., Miscetti, S., Miyashita, T., Murat, P., Pedreschi, E., Porter, F., Raffaelli, F., Ricci, M., Saputi, A., Sarra, I., Spinella, F., Tassielli, G., Tereshchenko, V., and Zhu, R. Y.
- Subjects
Physics ,Physics - Instrumentation and Detectors ,Calorimeter (particle physics) ,Physics::Instrumentation and Detectors ,Orders of magnitude (temperature) ,Detector ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Silicon photomultiplier ,Mu2e, crystal calorimeter ,Mu2e ,High Energy Physics::Experiment ,Fermilab ,Sensitivity (control systems) ,Lepton - Abstract
The Mu2e experiment at Fermilab will search for the charged lepton flavor violating process of neutrino-less $��\to e$ coherent conversion in the field of an aluminum nucleus. Mu2e will reach a single event sensitivity of about $2.5\cdot 10^{-17}$ that corresponds to four orders of magnitude improvements with respect to the current best limit. The detector system consists of a straw tube tracker and a crystal calorimeter made of undoped CsI coupled with Silicon Photomultipliers. The calorimeter was designed to be operable in a harsh environment where about 10 krad/year will be delivered in the hottest region and work in presence of 1 T magnetic field. The calorimeter role is to perform $��$/e separation to suppress cosmic muons mimiking the signal, while providing a high level trigger and a seeding the track search in the tracker. In this paper we present the calorimeter design and the latest R$\&$D results., 4 pages, conference proceeding for a presentation held at TIPP'2017. To be published on Springer Proceedings in Physics
- Published
- 2018
24. The Mu2e undoped CsI crystal calorimeter
- Author
-
Gianantonio Pezzullo, F. Happacher, A. Saputi, M. Cordelli, G. F. Tassielli, S. Donati, E. Pedreschi, F. Colao, F. Spinella, G. Corradi, T. S. Miyashita, V. Glagolev, Luca Morescalchi, F. Grancagnolo, Marco Martini, V. Tereshchenko, D. G. Hitlin, Z. Usubov, Frank C. Porter, R. Donghia, P. Murat, Yu.I. Davydov, S. Giovannella, E. Diociaiuti, I. Sarra, Bertrand Echenard, J. Budagov, F. Cervelli, M. Ricci, S. Miscetti, V. Baranov, F. Raffaelli, Ren-Yuan Zhu, S. Di Falco, N. Atanov, Atanov, N., Baranov, V., Budagov, J., Cervelli, F., Colao, F., Cordelli, M., Corradi, G., Davydov, Y. I., Falco, S. Di, Diociaiuti, E., Donati, S., Donghia, R., Echenard, B., Giovannella, S., Glagolev, V., Grancagnolo, F., Happacher, F., Hitlin, D. G., Martini, M., Miscetti, S., Miyashita, T., Morescalchi, L., Murat, P., Pedreschi, E., Pezzullo, G., Porter, F., Raffaelli, F., Ricci, M., Saputi, A., Sarra, I., Spinella, F., Tassielli, G., Tereshchenko, V., Usubov, Z., and Zhu, R. Y.
- Subjects
Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,Performance of High Energy Physics Detector ,FOS: Physical sciences ,Solenoid ,01 natural sciences ,7. Clean energy ,Particle identification ,Silicon photomultiplier ,Optics ,0103 physical sciences ,Mu2e ,Fermilab ,010306 general physics ,Instrumentation ,Mathematical Physics ,Physics ,Calorimeter ,Muon ,Calorimeter (particle physics) ,010308 nuclear & particles physics ,business.industry ,Detector ,Instrumentation and Detectors (physics.ins-det) ,High Energy Physics::Experiment ,business - Abstract
The Mu2e experiment at Fermilab will search for Charged Lepton Flavor Violating conversion of a muon to an electron in an atomic field. The Mu2e detector is composed of a tracker, an electromagnetic calorimeter and an external system, surrounding the solenoid, to veto cosmic rays. The calorimeter plays an important role to provide: a) excellent particle identification capabilities; b) a fast trigger filter; c) an easier tracker track reconstruction. Two disks, located downstream of the tracker, contain 674 pure CsI crystals each. Each crystal is read out by two arrays of UV-extended SiPMs. The choice of the crystals and SiPMs has been finalized after a thorough test campaign. A first small scale prototype consisting of 51 crystals and 102 SiPM arrays has been exposed to an electron beam at the BTF (Beam Test Facility) in Frascati. Although the readout electronics were not the final, results show that the current design is able to meet the timing and energy resolution required by the Mu2e experiment., Comment: 6 pages, 8 figures, proceedings of the "Calorimetry for the high energy frontier (CHEF17)" conference, 2-6 October 2017, Lyon, France
- Published
- 2018
- Full Text
- View/download PDF
25. Quality Assurance on a custom SiPMs array for the Mu2e experiment
- Author
-
Luca Morescalchi, F. Grancagnolo, V. Baranov, S. Miscetti, E. Diociaiuti, Gianantonio Pezzullo, D. G. Hitlin, Z. Usubov, F. Raffaelli, Frank C. Porter, F. Cervelli, F. Colao, G. Corradi, T. S. Miyashita, J. Budagov, S. Di Falco, S. Giovannella, V. Glagolev, F. Spinella, N. Atanov, Marco Martini, A. Saputi, Bertrand Echenard, P. Murat, M. Ricci, Yu.I. Davydov, Ren-Yuan Zhu, S. Donati, V. Tereshchenko, E. Pedreschi, I. Sarra, R. Donghia, M. Cordelli, G. F. Tassielli, F. Happacher, Atanov, N., Baranov, V., Budagov, J., Davydov, Y. I., Glagolev, V., Tereshchenko, V., Usubov, Z., Cervelli, F., Falco, S. D., Donati, S., Morescalchi, L., Pedreschi, E., Pezzullo, G., Raffaelli, F., Spinella, F., Colao, F., Cordelli, M., Corradi, G., Diociaiuti, E., Donghia, R., Giovannella, S., Happacher, F., Martini, M., Miscetti, S., Ricci, M., Saputi, A., Sarra, I., Echenard, B., Hitlin, D. G., Miyashita, T., Porter, F., Zhu, R. Y., Grancagnolo, F., Tassielli, G., and Murat, P.
- Subjects
Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,Radiation effect ,FOS: Physical sciences ,7. Clean energy ,01 natural sciences ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Silicon photomultiplier ,Optics ,Mu2e ,Fermilab ,Physics ,business.industry ,010401 analytical chemistry ,Detector ,Instrumentation and Detectors (physics.ins-det) ,0104 chemical sciences ,Calorimeter ,010404 medicinal & biomolecular chemistry ,High energy physics instrumentation ,Silicon radiation detectors ,Nuclear physic ,High Energy Physics::Experiment ,business ,Quality assurance ,Dark current ,Voltage - Abstract
The Mu2e experiment at Fermilab will search for the coherent $\mu \to e$ conversion on aluminum atoms. The detector system consists of a straw tube tracker and a crystal calorimeter. A pre-production of 150 Silicon Photomultiplier arrays for the Mu2e calorimeter has been procured. A detailed quality assur- ance has been carried out on each SiPM for the determination of its own operation voltage, gain, dark current and PDE. The measurement of the mean-time-to-failure for a small random sample of the pro-production group has been also completed as well as the determination of the dark current increase as a function of the ioninizing and non-ioninizing dose., Comment: 4 pages, 10 figures, conference proceeding for NSS-MIC 2017
- Published
- 2018
26. Design and status of the Mu2e crystal calorimeter
- Author
-
Z. Usubov, G. Corradi, V. Glagolev, M. Ricci, R. Donghia, E. Pedreschi, T. S. Miyashita, S. Miscetti, F. Raffaelli, E. Diociaiuti, A. Saputi, M. Cordelli, G. F. Tassielli, Frank C. Porter, Luca Morescalchi, V. Baranov, F. Grancagnolo, S. Donati, S. Di Falco, Marco Martini, N. Atanov, J. Budagov, Ren-Yuan Zhu, D. G. Hitlin, S. Giovannella, V. Tereshchenko, Gianantonio Pezzullo, F. Spinella, F. Cervelli, I. Sarra, P. Murat, F. Happacher, Yu.I. Davydov, F. Colao, B. Echenard, Atanov, N., Baranov, V., Budagov, J., Davydov, Yu. I., Glagolev, V., Tereshchenko, V., Usubov, Z., Cervelli, F., Di Falco, S., Donati, S., Morescalchi, L., Pedreschi, E., Pezzullo, G., Raffaelli, F., Spinella, F., Colao, F., Cordelli, M., Corradi, G., Diociaiuti, E., Donghia, R., Giovannella, S., Happacher, F., Martini, M., Miscetti, S., Ricci, M., Saputi, A., Sarra, I., Echenard, B., Hitlin, D. G., Miyashita, T., Porter, F., Zhu, R. Y., Grancagnolo, F., Tassielli, G., and Murat, P.
- Subjects
Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Solenoid ,Electron ,7. Clean energy ,01 natural sciences ,Particle identification ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Silicon photomultiplier ,Crystal ,0103 physical sciences ,Mu2e ,Fermilab ,Energy resolution ,Electrical and Electronic Engineering ,010306 general physics ,Nuclear and High Energy Physic ,Physics ,Muon ,Calorimeter (particle physics) ,010308 nuclear & particles physics ,Detector ,Instrumentation and Detectors (physics.ins-det) ,Meson ,Cosmic ray ,Nuclear Energy and Engineering ,High Energy Physics::Experiment ,Aluminum - Abstract
The Mu2e experiment at Fermilab searches for the charged-lepton flavour violating (CLFV) conversion of a negative muon into an electron in the field of an aluminum nucleus, with a distinctive signature of a mono-energetic electron of energy slightly below the muon rest mass (104.967 MeV). The Mu2e goal is to improve by four orders of magnitude the search sensitivity with respect to the previous experiments. Any observation of a CLFV signal will be a clear indication of new physics. The Mu2e detector is composed of a tracker, an electro- magnetic calorimeter and an external veto for cosmic rays surrounding the solenoid. The calorimeter plays an important role in providing particle identification capabilities, a fast online trigger filter, a seed for track reconstruction while working in vacuum, in the presence of 1 T axial magnetic field and in an harsh radiation environment. The calorimeter requirements are to provide a large acceptance for 100 MeV electrons and reach at these energies: (a) a time resolution better than 0.5 ns; (b) an energy resolution < 10% and (c) a position resolution of 1 cm. The calorimeter design consists of two disks, each one made of 674 undoped CsI crystals read by two large area arrays of UV-extended SiPMs. We report here the construction and test of the Module-0 prototype. The Module-0 has been exposed to an electron beam in the energy range around 100 MeV at the Beam Test Facility in Frascati. Preliminary results of timing and energy resolution at normal incidence are shown. A discussion of the technical aspects of the calorimeter engineering is also reported in this paper., 8 pages, 16 figures, submitted to IEEE
- Published
- 2018
- Full Text
- View/download PDF
27. Test of candidate light distributors for the muon(g−2)laser calibration system
- Author
-
Marin Karuza, R. Di Stefano, D. Cauz, M. Iacovacci, A. Fioretti, Claudio Ferrari, D. Babusci, A. Anastasi, G. Venanzoni, D. Moricciani, S. Mastroianni, D. W. Hertzog, Petra Koester, F. Baffigi, L. Fulgentini, J. Kaspar, L. A. Gizzi, Giovanni Cantatore, C. Gabbanini, L. Labate, G. Pauletta, L. Santi, Dariush Hampai, G. Di Sciascio, A.T. Fienberg, Sultan B. Dabagov, and G. Corradi
- Subjects
Physics ,Nuclear and High Energy Physics ,Muon ,Physics::Instrumentation and Detectors ,business.industry ,Laser ,law.invention ,Electromagnetic calorimeter ,Integrating sphere ,Optics ,law ,Calibration ,Transmittance ,High Energy Physics::Experiment ,Fermilab ,business ,Instrumentation ,Diffuser (optics) - Abstract
The new muon (g−2) experiment E989 at Fermilab will be equipped with a laser calibration system for all the 1296 channels of the calorimeters. An integrating sphere and an alternative system based on an engineered diffuser have been considered as possible light distributors for the experiment. We present here a detailed comparison of the two based on temporal response, spatial uniformity, transmittance and time stability.
- Published
- 2015
28. Performances of an Active Target GEM-Based TPC for the AMADEUS Experiment
- Author
-
Johann Zmeskal, Antonio Romero Vidal, Marco Poli Lener, Catalina Curceanu, D. Tagnani, and G. Corradi
- Subjects
Physics ,Time projection chamber ,Physics::Instrumentation and Detectors ,Detector ,Tracking (particle physics) ,Particle identification ,law.invention ,Momentum ,Nuclear physics ,law ,Gas electron multiplier ,Nuclear Experiment ,Collider ,Beam (structure) - Abstract
In this paper, we present the R & D activity on a new GEM-based Time Projection Chamber (GEM-TPC) detector for the inner region of the AMADEUS experiment, which is aiming to perform measurements of low-energy negative kaon interactions in nuclei at the DAΦNE e+ e- collider at LNF-INFN. A novel idea of using a GEM-TPC as a low mass target and detector at the same time comes motivated by the need of studying the low energy interactions of K- with nuclei in a complete way, tracking and identifying all of the produced particles. Even more, what makes the experimental proposal revolutionary is the possibility of using different gaseous targets without any other substantial intervention on the experimental setup, making it a flexible multipurpose device. This new detection technique applied to the nuclear physics requires the use of low-radiation length materials and very pure light gases such as Hydrogen, Deuterium, Helium-3, Helium-4, etc. In order to evaluate the GEM-TPC performances, a 10 × 10 cm2 prototype with a drift gap of 15 cm has been realized. The detector was tested at the πM1 beam facility of the Paul Scherrer Institut (PSI) with low momentum pions and protons. Detection efficiency and spatial resolution, as a function of gas mixture, gas gain and ionazing particle, are reported and discussed.
- Published
- 2015
29. $K\to\pi\nu\nu$ at NA62
- Author
-
G. Anzivino, J. Morant, N. Estrada, N Desimone, G. Paoluzzi, C. Capoccia, Kekelidze, P. Wertelaers, Semenov, P. Sutcliffe, E. Iacopini, M. Lenti, F. Marchetto, Piero Vicini, T Jones KKampf, Christopher John Parkinson, M. Veltri, G. Corradi, Cerny, D. Pietreanu, Pierre Jarron, A An tonelli, P. Lichard, M. Fiorini, Marian Krivda, F. Bucci, T. Numao, D. Tagnani, Milena Misheva, R. Fantechi, Evgueni Goudzovski, Yu. Kiryushin, H. D. Wahl, G. Maire, R. Aliberti, A. Norton, Roland Winston, P. Petrov, Petra Riedler, N. Doble, D. Soldi, E. Cortina Gil, B. Velghe, Roberto Piandani, S. Chiozzi, F. Cotorobai, Mauro Raggi, I. O. Skillicorn, L. Fulton, A. Mapelli, David Lomidze, L. Di Lella, L. Bician, Luca Federici, G. D'Agostini, F. Perez Gomez, Likhacheva, E. Capitolo, Mauro Piccini, J. Degrange, Elsha, J. Kaplon, M. Pepe, Paolo Massarotti, R. Page, S. Giudici, Mario Giorgi, Rainer Wanke, D. Di Filippo, A. Sturgess, B. Wrona, A. Fucci, P. Rubin, L. Peruzzo, R. Guida, G. Salina, Andrea Catinaccio, G. Mannocchi, O. Hutanu, A. Goncalves Martins, Georgi P. Georgiev, A. Winhart, Bonaiuto, Z. Kucerova, A. Conovaloff, S. Balev, A. Khudyakov, M. Boretto, Paolo Valente, F. Hahn, A Khotyant sev, Dave Britton, F. Newson, A. Ceccucci, B. Checcucci, Andrea Bizzeti, Roberto Ammendola, S. Shkarovskiy, M. Zamkovsky, J. Kunze, Roberto Ciaranfi, J. B. Dainton, Helen F Heath, J. R. Fry, J. L. Fu, M Valdata Nappi, M. Vormstein, P. Cenci, I. Azhinenko, N. A. Molokanova, G. Ruggiero, J. Noël, M. Koval, S. Venditti, A. Shaikhiev, R. Lenci, Samsonov, A. Salamon, Mattia Barbanera, G. Khoriauli, H. O. Danielsson, A. Romano, Fausto Sargeni, M. Serra, F. Herman, G. Collazuol, M. Napolitano, S. Gallorini, M. Medvedeva, J. Calvo, A P Ostankov, M. Vasile, G. Lamanna, S. Ghinescu, R. Volpe, M. Bragadireanu, P. S. Cooper, J. Pinzino, D. J. Munday, T. Vassilieva, F. Costantini, Mb Brunetti, Fabrizio Petrucci, Luca Pontisso, Francesco Gonnella, Tomas Blazek, A. Cotta Ramusino, D. E. Hutchcroft, Leander Litov, S. Padolski, L. Iacobuzio, O. Yushchenko, Konrad Kleinknecht, Emilio Leonardi, I. Polenkevich, A. Kleimenova, S. Kholodenko, A. Sotnikov, D. Coward, Palladino, G. Britvich, Yu. Kudenko, P.A. Cooke, S. Galeotti, Claudio Santoni, Sugonyaev, B. Angelucci, Alexander Kluge, B. Hallgren, A. Cecchetti, F. Spinella, R. Lollini, Ernesto Migliore, A. Filippi, Roberta Arcidiacono, E. Gushchin, Fascianelli, M. Moulson, Kozhuharov, B Bloch Devaux, M. Sozzi, E. Pedreschi, E. Jones, M. Mirra, L. Glonti, Ilaria Neri, T. Enik, Douglas Bryman, Sergei Fedotov, Alessandro Lonardo, K. J. McCormick, Cristina Biino, J. Bendotti, A. Gianoli, Angelo Biagioni, F. Butin, O. Chikilev, P. F. Dalpiaz, N. Szilasi, Jürgen Engelfried, N. Dixon, Tomáš Husek, R.J. Staley, E. Imbergamo, Bolotov, Russo, T Capus sela, D. T. Madigozhin, Duk, Antonio Cassese, C. Cerri, Matteo Lupi, S. Martellotti, S. Trilov, Yu. Potrebenikov, C. Mandeiro, Giuseppe Latino, A. Blik, E. Gamberini, F. Raffaelli, M. Noy, G. Lehmann Miotto, Babette Döbrich, Obraztsov, L. Gatignon, Tommaso Spadaro, S. Di Lorenzo, R. Lietava, E. Minucci, A.I. Zinchenko, R. Marchevski, Antonino Sergi, M Perrin Terrin, G. Aglieri Rinella, A. Mefodev, I. Mannelli, S. Movchan, C. Lazzeroni, F. Ambrosino, K. Massri, Falaleev, D. Protopopescu, Emilie Maurice, Nicolas Lurkin, Ryjov, G. Nuessle, O. Jamet, M. Morel, E. Menichetti, P. Matak, and G. Saracino
- Subjects
Physics ,Particle physics ,Pi - Published
- 2017
30. 15 Mrad ionizing radiation dose effect on GEMINI
- Author
-
D. Tagnani, F. Murtas, Giuseppe Gorini, A. Pezzotta, L. Mangiagalli, Andrea Baschirotto, G. Corradi, Mangiagalli, L, Pezzotta, A, Tagnani, D, Corradi, G, Murtas, F, Gorini, G, and Baschirotto, A
- Subjects
Physics ,GEM ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,business.industry ,Detector ,Radiation ,01 natural sciences ,Ionizing radiation ,mixed-signal ,radiation ,GEMINI ,Absorbed dose ,Total dose ,0103 physical sciences ,Dose effect ,Optoelectronics ,Irradiation ,Electrical and Electronic Engineering ,010306 general physics ,business ,damage ,Instrumentation ,Radiation hardening - Abstract
The GEMINI front-end system that will operate at LoKI experiment at ESS is expected to be exposed to radiation for a Total Ionizing Dose (TID) up to 200krad during Triple-GEM detector usage. Analyzing the effect of ionizing radiation on chip gives important information on its robustness, critical for architecture validation. After irradiation with a total dose of 15 Mrad core elements of GEMINI channels still resulted to be functional. This indicates the possibility of using such devices also in other experiments where it would be exposed to higher TID. The test also highlighted few critical points of the architecture that could be starting point to improve Triple-GEM front-end system radiation hardness.
- Published
- 2017
31. The calorimeter of the Mu2e experiment at Fermilab
- Author
-
S. Donati, Yu.I. Davydov, Bertrand Echenard, J. Budagov, S. Miscetti, F. Raffaelli, R. Donghia, A. Saputi, I. Sarra, Luca Morescalchi, V. Tereshchenko, Z. Usubov, F. Grancagnolo, M. Cordelli, G. F. Tassielli, E. Diociaiuti, V. Glagolev, S. Di Falco, F. Cervelli, F. Colao, Frank C. Porter, Ren-Yuan Zhu, G. Corradi, N. Atanov, M. Martini, E. Dané, F. Spinella, V. Baranov, D. G. Hitlin, S. Giovannella, K. T. Flood, Gianantonio Pezzullo, F. Happacher, Tommaso Radicioni, M. Ricci, T. S. Miyashita, P. Murat, Atanov, N., Baranov, V., Budagov, J., Cervelli, F., Colao, F., Cordelli, M., Corradi, G., Dané, E., Davydov, Y. I., Falco, S. Di, Diociaiuti, E., Donati, S., Donghia, R., Echenard, B., Flood, K., Giovannella, S., Glagolev, V., Grancagnolo, F., Happacher, F., Hitlin, D. G., Martini, M., Miscetti, S., Miyashita, T., Morescalchi, L., Murat, P., Pezzullo, G., Porter, F., Raffaelli, F., Radicioni, T., Ricci, M., Saputi, A., Sarra, I., Spinella, F., Tassielli, G., Tereshchenko, V., Usubov, Z., and Zhu, R. Y.
- Subjects
Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Cosmic ray ,Electron ,01 natural sciences ,7. Clean energy ,Radiation-hard detector ,Nuclear physics ,Calorimeters ,Radiation-hard detectors ,Instrumentation ,Mathematical Physics ,0103 physical sciences ,Mu2e ,Fermilab ,010306 general physics ,Physics ,Calorimeter ,Muon ,Calorimeter (particle physics) ,010308 nuclear & particles physics ,Instrumentation and Detectors (physics.ins-det) ,Orders of magnitude (time) ,High Energy Physics::Experiment ,Lepton - Abstract
The Mu2e experiment at Fermilab looks for Charged Lepton Flavor Violation (CLFV) improving by 4 orders of magnitude the current experimental sensitivity for the muon to electron conversion in a muonic atom. A positive signal could not be explained in the framework of the current Standard Model of particle interactions and therefore would be a clear indication of new physics. In 3 years of data taking, Mu2e is expected to observe less than one background event mimicking the electron coming from muon conversion. Achieving such a level of background suppression requires a deep knowledge of the experimental apparatus: a straw tube tracker, measuring the electron momentum and time, a cosmic ray veto system rejecting most of cosmic ray background and a pure CsI crystal calorimeter, that will measure time of flight, energy and impact position of the converted electron. The calorimeter has to operate in a harsh radiation environment, in a 10-4 Torr vacuum and inside a 1 T magnetic field. The results of the first qualification tests of the calorimeter components are reported together with the energy and time performances expected from the simulation and measured in beam tests of a small scale prototype., Comment: 11 pages, 7 figures, proceedings of 14th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD16) 3 - 6 October 2016 Siena, Italy, Journal of Instrumentation, Volume 12, January 2017 http://stacks.iop.org/1748-0221/12/i=01/a=C01061
- Published
- 2017
32. A test system for the front-end electronics of the PADME charged particle detector system
- Author
-
Iveta Antonova, Paolo Valente, Mauro Raggi, L. Tsankov, G. Corradi, Mityo Georgiev Mitev, Georgi P. Georgiev, Sergio Ceravolo, and V. Kozhuharov
- Subjects
Physics ,Physics::Instrumentation and Detectors ,business.industry ,Detector ,Readout electronics ,Led driver ,Time resolution ,Electron ,Front end electronics ,Charged particle ,Optics ,Front-end electronics ,LED driver ,Scintillation detectors ,Energy Engineering and Power Technology ,Electrical and Electronic Engineering ,Instrumentation ,Electronics ,business - Abstract
The PADME charged particle detector system aims to detect positrons and electrons with efficiency better than 99 % and time resolution below 1 ns. The system hosts about 200 readout electronics channels whose operation has to be verified and commissioned. A custom based test system allowing performing qualitative check of the detector and the front-end electronics has been developed. The initial tests and the performance of the front-end electronics are described and discussed. Time resolution better than 400 ps was achieved.
- Published
- 2017
33. Measurement of the energy and time resolution of a undoped CsI + MPPC array for the Mu2e experiment
- Author
-
D. Tagnani, F. Happacher, S. Miscetti, G. Corradi, Z. Usubov, R. Donghia, V. Tereshchenko, O. Atanova, M. Cordelli, F. Colao, M. Martini, Gianantonio Pezzullo, S. Di Falco, S. Giovannella, Yu.I. Davydov, I. Sarra, P. Murat, S.R. Soleti, A. Saputi, and Luca Morescalchi
- Subjects
Physics ,Range (particle radiation) ,Physics - Instrumentation and Detectors ,Photon ,010308 nuclear & particles physics ,business.industry ,Physics::Instrumentation and Detectors ,Resolution (electron density) ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,01 natural sciences ,High Energy Physics - Experiment ,Full width at half maximum ,High Energy Physics - Experiment (hep-ex) ,Optics ,0103 physical sciences ,Mu2e ,Cathode ray ,Physics::Accelerator Physics ,010306 general physics ,business ,Instrumentation ,Mathematical Physics ,Energy (signal processing) ,Beam (structure) - Abstract
This paper describes the measurements of energy and time response and resolution of a 3 x 3 array made of undoped CsI crystals coupled to large area Hamamatsu Multi Pixel Photon Counters. The measurements have been performed using the electron beam of the Beam Test Facility in Frascati (Rome, Italy) in the energy range 80-120 MeV. The measured energy resolution, estimated with the FWHM, at 100 MeV is 16.4%. This resolution is dominated by the energy leakage due to the small dimensions of the prototype. The time is reconstructed by fitting the leading edge of the digitized signals and applying a digital constant fraction discrimination technique. A time resolution of about 110 ps at 100 MeV is achieved., Comment: 10 pages, 25 figures
- Published
- 2017
- Full Text
- View/download PDF
34. Geant4 simulations of the lead fluoride calorimeter
- Author
-
A. Fioretti, A. Anastasi, A. Lusiani, Dariush Hampai, C. Gabbanini, A. Liedl, Marin Karuza, G. Piacentino, D. Cauz, O. Escalante, A. Gioiosa, A. Basti, Alexey Alexandrovich Tishchenko, D. Moricciani, N. Raha, G. Pauletta, Franco Bedeschi, S. Mastroianni, L. Santi, Mariantonietta Bartolini, S.B. Dabagov, G. Di Sciascio, Fabrizio Marignetti, Claudio Ferrari, R. Di Stefano, Mikhail N. Strikhanov, A. A. Savchenko, M. Iacovacci, A. Driutti, G. Corradi, Giovanni Cantatore, G. Venanzoni, Savchenko, A. A., Tishchenko, A. A., Dabagov, S. B., Anastasi, A., Venanzoni, G., Strikhanov, M. N., Basti, A., Bedeschi, F., Bartolini, M., Cantatore, Giovanni, Cauz, D., Corradi, G., Di Sciascio, G., Di Stefano, R., Driutti, A., Escalante, O., Ferrari, C., Fioretti, A., Gabbanini, C., Gioiosa, A., Hampai, D., Iacovacci, M., Karuza, M., Liedl, A., Lusiani, A., Marignetti, F., Mastroianni, S., Moricciani, D., Pauletta, G., Piacentino, G. M., Raha, N., Santi, L., Basti, Giulia, Bartolini, Matteo, Cantatore, G., ESCALANTE AGUIRRE, Octavio, Marignetti, Fabrizio, and Lusiani, Alberto
- Subjects
Accelerator Physics (physics.acc-ph) ,Nuclear and High Energy Physics ,Photon ,Physics - Instrumentation and Detectors ,Cherenkov detector ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Radiation ,01 natural sciences ,030218 nuclear medicine & medical imaging ,law.invention ,Nuclear physics ,03 medical and health sciences ,0302 clinical medicine ,Electromagnetic calorimeter ,law ,0103 physical sciences ,Lead-fluoride crystals Electromagnetic calorimeter Geant4 optical processes G-2 experiment Muon experiment ,G-2 experiment ,Geant4 optical processes ,Lead-fluoride crystals ,Muon experiment ,Instrumentation ,Geant4 optical processe ,Cherenkov radiation ,Nuclear and High Energy Physic ,Physics ,Calorimeter (particle physics) ,010308 nuclear & particles physics ,Settore FIS/01 - Fisica Sperimentale ,Bremsstrahlung ,Instrumentation and Detectors (physics.ins-det) ,Computational Physics (physics.comp-ph) ,Lead-fluoride crystal ,Transition radiation ,Physics - Accelerator Physics ,High Energy Physics::Experiment ,Physics - Computational Physics ,Storage ring - Abstract
In this paper we simulate the emission by charged particles in complex structures with help of Geant4. We take into account Cherenkov radiation, transition radiation, bremsstrahlung, pair production and other accompanying processes. As an application we investigate the full size electromagnetic calorimeter for the muon g-2 experiment at Fermilab. A calorimeter module (24 are expected in the experiment) consists of a Delrin front panel for installation of the laser calibration system, 54 PbF2 Cherenkov crystals wrapped by the black Millipore paper, and silicon photo-multiplier sensors. We report here on a simulation of radiation from positrons passing through the calorimeter system. We carry out the simulation using Geant4 toolkit, which provides a complete set of tools for all areas of detector simulation: geometry, tracking, detector response, run, event and track management, and visualization. We consider Cherenkov photons expansion when a positron moves down through the calorimeter at the arbitrary angle of incidence. Both spectral and angular distributions of Cherenkov optical photons in different parts of the calorimeter system have been evaluated as well as the transition radiation and pre-shower distributions from the panel and from the Al vacuum chamber of the storage ring. (The paper is in progress)., Comment: The 7th International Conference "Channeling 2016 - Charged & Neutral Particles Channeling Phenomena"/ in progress
- Published
- 2017
35. The Fermilab Muon g-2 experiment: Laser calibration system
- Author
-
S.B. Dabagov, S. Mastroianni, M. Bartolini, L. Santi, Claudio Ferrari, A. Driutti, A. Nath, G. Di Sciascio, D. Cauz, R. Di Stefano, A. Liedl, N. Raha, Fabrizio Marignetti, M. Iacovacci, O. Escalante, Marin Karuza, A. Fioretti, A. Anastasi, D. Moricciani, Dariush Hampai, Giovanni Cantatore, G. Venanzoni, G. Piacentino, A. Basti, F. Bedeschi, G. Corradi, A. Lusiani, G. Pauletta, C. Gabbanini, A. Gioiosa, Karuza, M., Anastasi, A., Basti, A., Bedeschi, F., Bartolini, M., Cantatore, G., Cauz, D., Corradi, G., Dabagov, S., Di Sciascio, G., Di Stefano, R., Driutti, A., Escalante, O., Ferrari, C., Fioretti, A., Gabbanini, C., Gioiosa, A., Hampai, D., Iacovacci, M., Liedl, A., Lusiani, A., Marignetti, F., Mastroianni, S., Moricciani, D., Nath, A., Pauletta, G., Piacentino, G. M., Raha, N., Santi, L., Venanzoni, G., Cantatore, Giovanni, Sciascio, G. Di, and Stefano, R. Di
- Subjects
Particle physics ,sources ,magnetic moment ,Instrumentation ,Physics beyond the Standard Model ,Detector alignment and calibration methods (lasers, sources, particle-beams) ,Measure (physics) ,Laser ,Cherenkov detectors ,Lasers ,Optics ,Mathematical Physics ,Electron ,muon dipole moment ,01 natural sciences ,muon ,0103 physical sciences ,Calibration ,laser calibration ,Detector alignment and calibration methods (lasers, sources ,Fermilab ,010306 general physics ,Physics ,Calibration system ,Muon ,010308 nuclear & particles physics ,particle-beams) ,Detector alignment and calibration methods (lasers ,Dipole ,Calibration system, muon, magnetic moment ,Optic ,ELECTRON ,Cherenkov detector - Abstract
The anomalous muon dipole magnetic moment can be measured (and calculated) with great precision thus providing insight on the Standard Model and new physics. Currently an experiment is under construction at Fermilab (U.S.A.) which is expected to measure the anomalous muon dipole magnetic moment with unprecedented precision. One of the improvements with respect to the previous experiments is expected to come from the laser calibration system which has been designed and constructed by the Italian part of the collaboration (INFN). Furthermore, an emphasis of this paper will be on the calibration system that is in the final stages of construction as well as the experiment which is expected to start data taking this year.
- Published
- 2017
36. Electron beam test of key elements of the laser-based calibration system for the muon g - 2 experiment
- Author
-
A. Gioiosa, A. Basti, G. Pauletta, R. Di Stefano, D. Moricciani, D. W. Hertzog, D. Cauz, Claudio Ferrari, A.T. Fienberg, A. Driutti, S.B. Dabagov, M. Bartolini, M. Iacovacci, Giovanni Cantatore, G. Corradi, G. Di Sciascio, O. Escalante, N. Raha, A. Liedl, J. Kaspar, G. Venanzoni, L. Santi, S. Mastroianni, G. M. Piacentino, Dariush Hampai, E. Rossi, A. Fioretti, A. Anastasi, Marin Karuza, Fabrizio Marignetti, A. Lusiani, C. Gabbanini, Franco Bedeschi, Anastasi, A., Basti, A., Bedeschi, F., Bartolini, M., Cantatore, G., Cauz, D., Corradi, G., Dabagov, S., Di Sciascio, G., Di Stefano, R., Driutti, A., Escalante, O., Ferrari, C., Fienberg, A. T., Fioretti, A., Gabbanini, C., Gioiosa, A., Hampai, D., Hertzog, D. W., Iacovacci, M., Karuza, M., Kaspar, J., Liedl, A., Lusiani, A., Marignetti, F., Mastroianni, S., Moricciani, D., Pauletta, G., Piacentino, G. M., Raha, N., Rossi, E., Santi, L., Venanzoni, G., Cantatore, Giovanni, and Lusiani, Alberto
- Subjects
Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Electromagnetic calorimeter ,Laser ,Muon ,Instrumentation ,Physics::Instrumentation and Detectors ,Physics::Optics ,FOS: Physical sciences ,01 natural sciences ,law.invention ,Nuclear physics ,law ,0103 physical sciences ,Calibration ,Fermilab ,010306 general physics ,Nuclear and High Energy Physic ,Physics ,010308 nuclear & particles physics ,Settore FIS/01 - Fisica Sperimentale ,Instrumentation and Detectors (physics.ins-det) ,Calorimeter ,Measuring instrument ,Physics::Accelerator Physics ,Beam (structure) - Abstract
We report the test of many of the key elements of the laser-based calibration system for muon g - 2 experiment E989 at Fermilab. The test was performed at the Laboratori Nazionali di Frascati's Beam Test Facility using a 450 MeV electron beam impinging on a small subset of the final g - 2 lead-fluoride crystal calorimeter system. The calibration system was configured as planned for the E989 experiment and uses the same type of laser and most of the final optical elements. We show results regarding the calorimeter's response calibration, the maximum equivalent electron energy which can be provided by the laser and the stability of the calibration system components., Comment: Submitted to Nuclear Instrument and Methods A
- Published
- 2017
37. Design and status of the Mu2e Calorimeter
- Author
-
S. Donati, Gianantonio Pezzullo, G. Corradi, Luca Morescalchi, N. Atanov, S. Giovannella, Yu.I. Davydov, J. Budagov, F. Raffaelli, V. Glagolev, S. Miscetti, A. Saputi, S. Di Falco, M. Martini, F. Cervelli, I. Sarra, M. Cordelli, F. Happacher, G. F. Tassielli, E. Diociaiuti, F. Colao, E. Pedreschi, B. Echenard, F. Grancagnolo, D. G. Hitlin, F. Spinella, R. Donghia, V. Tereshchenko, Ren-Yuan Zhu, Z. Usubov, M. Ricci, T. S. Miyashita, P. Murat, F. C. Porter, V. A. Baranov, Atanov, N., Baranov, V., Budagov, J., Davydov, Y. I., Glagolev, V., Tereshchenko, V., Usubov, Z., Cervelli, F., Falco, S. D., Donati, S., Morescalchi, L., Pedreschi, E., Pezzullo, G., Raffaelli, F., Spinella, F., Colao, F., Cordelli, M., Corradi, G., Diociaiuti, E., Donghia, R., Giovannella, S., Happacher, F., Martini, M., Miscetti, S., Ricci, M., Saputi, A., Sarra, I., Echenard, B., Hitlin, D. G., Miyashita, T., Porter, F., Zhu, R. Y., Grancagnolo, F., Tassielli, G., and Murat, P.
- Subjects
Range (particle radiation) ,Materials science ,Calorimeter (particle physics) ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,business.industry ,Radiation ,01 natural sciences ,Optics ,Silicon photomultiplier ,0103 physical sciences ,Mu2e ,Cathode ray ,Calibration ,business ,010303 astronomy & astrophysics ,Beam (structure) - Abstract
The Mu2e calorimeter is composed by $\sim 1400$ un- doped CsI crystals coupled to large area UV extended Silicon Photomultipliers(SIPMs) arranged intwo annular disks. This calorimeter has to provide precise information on energy, timing and position resolution. It should also be fast enough towithstand the high rate background and it mustoperate and survive in a high radiation environment. All steps done for the construction and test of the Module -0 prototype, that is an array of51 pre-production crystals, are reported. The Module -0 was exposed to an electron beam in the energy range around 100 MeV at the BTF (Beam Test Facility) inFrascati. Preliminary results of timing and energy resolution at normal incidence are shown.
- Published
- 2017
- Full Text
- View/download PDF
38. Recent results and prospects for NA62 experiment
- Author
-
G. Paoluzzi, Pierre Jarron, Marian Krivda, G. Ruggiero, Christopher John Parkinson, M. Veltri, Evgueni Goudzovski, E. Pedreschi, Alexander Kluge, R. Aliberti, A. Romano, Fausto Sargeni, G. Collazuol, A. Norton, Roland Winston, F. Bucci, A. Cecchetti, E. Jones, M. Mirra, Milena Misheva, A P Ostankov, E. Minucci, F. Spinella, R. Lollini, L. Glonti, P. S. Cooper, T. Spadaro, Alessandro Lonardo, L. Peruzzo, B. Bloch-Devaux, G. Salina, Andrea Catinaccio, A. Antonelli, Francesco Gonnella, R. Volpe, Z. Kucerova, V. Russo, B. Velghe, K. J. McCormick, H. O. Danielsson, F. Costantini, Tomas Blazek, A.I. Zinchenko, A. Sturgess, D. Soldi, A. Cotta Ramusino, E. Gamberini, F. Marchetto, Piero Vicini, G. Mannocchi, V. Fascianelli, S. Movchan, C. Lazzeroni, F. Ambrosino, M. Bragadireanu, A. Khudyakov, Paolo Valente, E. Capitolo, S. Chiozzi, A. Fucci, L. Fulton, David Lomidze, Luca Pontisso, S. Padolski, O. Yushchenko, P. Lichard, R. Marchevski, Antonino Sergi, F. Raffaelli, P. Sutcliffe, M. Koval, S. Venditti, A. Shaikhiev, F. Cotorobai, Lau Gatignon, M. Boretto, C. Capoccia, O. Chikilev, S. Kholodenko, Tomáš Husek, F. Hahn, A. Mefodev, Andrea Biagioni, D. Pietreanu, B. Angelucci, M. Fiorini, E. Iacopini, V. Falaleev, Dave Britton, J. R. Fry, M. Lenti, G. Lamanna, P.A. Cooke, K. Massri, A. Goncalves Martins, I. Mannelli, T. Numao, D. Tagnani, L. Iacobuzio, Emilio Leonardi, A. Ceccucci, B. Checcucci, Cristina Biino, Andrea Bizzeti, M. Vormstein, V. Palladino, D. T. Madigozhin, P. Cenci, V. Samsonov, M. Sozzi, I. Polenkevich, A. Khotyantsev, V. Elsha, V. Bolotov, J. Degrange, J. Kaplon, V. Obraztsov, R. Fantechi, Yu. Kudenko, L. Di Lella, Ilaria Neri, N. Dixon, R. Guida, N. Estrada, Antonio Cassese, Mario Giorgi, G. Lehmann-Miotto, S. Martellotti, Vincenzo Bonaiuto, D. Di Filippo, P. Petrov, T. Enik, Douglas Bryman, Mauro Piccini, Sergei Fedotov, Roberta Arcidiacono, David Hutchcroft, T. Capussela, R.J. Staley, E. Imbergamo, Paolo Massarotti, Konrad Kleinknecht, Mattia Barbanera, E. Cortina Gil, Vladimir Ryjov, J. Bendotti, Yu. Kiryushin, D. J. Munday, T. Vassilieva, P. F. Dalpiaz, V K Semenov, N. De Simone, L. Bician, Luca Federici, E. Gushchin, Matteo Lupi, R. Lenci, F. Perez Gomez, A. Sotnikov, R. Page, P. Wertelaers, Claudio Santoni, Vladimir Kekelidze, F. Newson, C. Cerri, A. Mapelli, Yu. Potrebenikov, S. Trilov, D. Coward, M. Perrin-Terrin, C. Mandeiro, B. Wrona, Giuseppe Latino, F. Herman, M. Valdata-Nappi, S. Shkarovskiy, Mauro Raggi, N. Szilasi, G. D'Agostini, Babette Döbrich, Roberto Piandani, V. Kozhuharov, H. D. Wahl, N. Doble, M. Zamkovsky, S. Giudici, Georgi P. Georgiev, Viacheslav Duk, J. B. Dainton, Jürgen Engelfried, G. Maire, A. Gianoli, Roberto Ammendola, M. Pepe, Roberto Ciaranfi, V. Cerny, A. Conovaloff, S. Balev, F. Butin, M. Morel, Helen F Heath, A. Salamon, G. Khoriauli, M. Serra, Rainer Wanke, E. Menichetti, P. Matak, G. Saracino, Petra Riedler, S. Gallorini, P. Rubin, J. L. Fu, O. Hutanu, M. Vasile, I. O. Skillicorn, S. Di Lorenzo, R. Lietava, A. Winhart, G. Aglieri Rinella, A. Blik, M. Noy, G. Anzivino, J. Morant, G. Corradi, M. Moulson, Karol Kampf, J. Kunze, I. Azhinenko, N. A. Molokanova, M. Napolitano, J. Pinzino, Fabrizio Petrucci, Leander Litov, A. Kleimenova, G. Britvich, S. Galeotti, B. Hallgren, D. Protopopescu, Emilie Maurice, Nicolas Lurkin, M. B. Brunetti, V. Sougonyaev, G. Nuessle, O. Jamet, Ambrosino, F., Corvino, M., Massarotti, P., Mirra, M., Napolitano, M., and Saracino, G.
- Subjects
Accelerator Physics (physics.acc-ph) ,Nuclear and High Energy Physics ,Particle physics ,Physics - Instrumentation and Detectors ,Meson ,Physics beyond the Standard Model ,Measure (physics) ,Physics - Accelerator Physics ,FOS: Physical sciences ,kaons ,NA62 experiment ,01 natural sciences ,NA62 ,Settore FIS/04 - Fisica Nucleare e Subnucleare ,Nuclear physics ,rare decays ,0103 physical sciences ,Detectors and Experimental Techniques ,010306 general physics ,Physics ,Large Hadron Collider ,010308 nuclear & particles physics ,Branching fraction ,High Energy Physics::Phenomenology ,Instrumentation and Detectors (physics.ins-det) ,Kaon physics ,CERN SPS ,High Energy Physics::Experiment ,kaon - Abstract
The $K^+\rightarrow \pi^+ \nu \bar \nu$ decay is one of the theoretically cleanest meson decay where to look for indirect effects of new physics complementary to LHC searches. The NA62 experiment at CERN is designed to measure the branching ratio (BR) of this decay with 10\% precision. NA62 has been successfully launched in October 2014, took data in pilot runs in 2014 and 2015 reaching the final designed beam intensity. The NA62 experimental setup is illustrated and quality of data acquired in view of the final measurement is reported. The $K^+\rightarrow \pi^+ \nu \bar \nu$ decay is theoretically one of the cleanest meson decays and so a good place to look for indirect effects of new physics complementary to LHC searches. The NA62 experiment at CERN is designed to measure the branching ratio of this decay with 10\% precision. NA62 was commissioned in October 2014, took data in pilot runs in 2014 and 2015. The NA62 experimental setup is illustrated and data quality is reported. The K+→π+νν‾ decay is theoretically one of the cleanest meson decays and so a good place to look for indirect effects of new physics complementary to LHC searches. The NA62 experiment at CERN is designed to measure the branching ratio of this decay with 10% precision. NA62 was commissioned in October 2014, took data in pilot runs in 2014 and 2015. The NA62 experimental setup is illustrated and data quality is reported.
- Published
- 2016
39. A low noise front-end for the Belle2 forward electromagnetic calorimeter upgrade
- Author
-
P. Branchini, A. Aloisio, A. Budano, G. Corradi, M. Galasso, and D. Tagnani
- Published
- 2016
40. Energy and time resolution for a LYSO matrix prototype of the Mu2e experiment
- Author
-
P. Ott, F. Colao, Gianantonio Pezzullo, T. S. Miyashita, F. Happacher, Andy Thomas, S. Giovannella, M. Martini, G. Corradi, Luca Morescalchi, Y. Davydov, M. Cordelli, G. F. Tassielli, K. T. Flood, V. A. Baranov, I. Sarra, S. Miscetti, N. Atanov, D. G. Hitlin, V. Tereshchenko, S.R. Soleti, A. Saputi, E. Dané, V. Glagolev, Atanov, N., Baranov, V., Colao, F., Cordelli, M., Corradi, G., Dané, E., Davydov, Yu. I., Flood, K., Giovannella, S., Glagolev, V., Happacher, F., Hitlin, D. G., Martini, M., Miscetti, S., Miyashita, T., Morescalchi, L., Ott, P., Pezzullo, G., Saputi, A., Sarra, I., Soleti, S. R., Tassielli, G., Tereshchenko, V., and Thomas, A.
- Subjects
Scintillating crystal ,Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Electron ,Calorimetry ,01 natural sciences ,Lyso ,High Energy Physics - Experiment ,Nuclear physics ,Matrix (mathematics) ,High Energy Physics - Experiment (hep-ex) ,Optics ,0103 physical sciences ,Mu2e ,Instrumentation ,Nuclear and High Energy Physic ,010302 applied physics ,Physics ,Range (particle radiation) ,Calorimeter (particle physics) ,010308 nuclear & particles physics ,business.industry ,Avalanche photodiode ,Instrumentation and Detectors (physics.ins-det) ,Physics::Accelerator Physics ,business ,Energy (signal processing) - Abstract
We have measured the performances of a LYSO crystal matrix prototype tested with electron and photon beams in the energy range 60$-$450 MeV. This study has been carried out to determine the achievable energy and time resolutions for the calorimeter of the Mu2e experiment., 2 pages, 3 figures, 13th Pisa Meeting on Advanced Detectors
- Published
- 2016
41. Design and status of the Mu2e electromagnetic calorimeter
- Author
-
Luca Morescalchi, R. Donghia, V. Tereshchenko, T. S. Miyashita, F. Colao, D. Pasciuto, M. Cordelli, G. F. Tassielli, I. Sarra, B. Echenard, P. Murat, F. C. Porter, V. A. Baranov, N. Atanov, D. G. Hitlin, S. Donati, S.R. Soleti, A. Saputi, Z. Usubov, M. Martini, R. Carosi, S. Di Falco, F. Cervelli, Gianantonio Pezzullo, Ren-Yuan Zhu, G. Corradi, J. Budagov, F. Happacher, S. Giovannella, Yu.I. Davydov, E. Dané, V. Glagolev, F. Grancagnolo, K. T. Flood, S. Miscetti, F. Spinella, Atanov, N., Baranov, V., Budagov, J., Carosi, R., Cervelli, F., Colao, F., Cordelli, M., Corradi, G., Dané, E., Davydov, Yu. I., Di Falco, S., Donati, S., Donghia, R., Echenard, B., Flood, K., Giovannella, S., Glagolev, V., Grancagnolo, F., Happacher, F., Hitlin, D. G., Martini, M., Miscetti, S., Miyashita, T., Morescalchi, L., Murat, P., Pasciuto, D., Pezzullo, G., Porter, F., Saputi, A., Sarra, I., Soleti, S. R., Spinella, F., Tassielli, G., Tereshchenko, V., Usubov, Z., and Zhu, R. Y.
- Subjects
Scintillating crystal ,Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,APDS ,Physics::Instrumentation and Detectors ,Silicon photomultipliers ,FOS: Physical sciences ,Calorimetry ,Silicon photomultiplier ,7. Clean energy ,01 natural sciences ,Particle identification ,law.invention ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,law ,Scintillating crystals ,0103 physical sciences ,Mu2e ,Fermilab ,010306 general physics ,Instrumentation ,Nuclear and High Energy Physic ,Physics ,Calorimeter (particle physics) ,010308 nuclear & particles physics ,Avalanche photodiodes ,Avalanche photodiode ,Instrumentation and Detectors (physics.ins-det) ,Lepton flavour violation - Abstract
The Mu2e experiment at Fermilab aims at measuring the neutrinoless conversion of a negative muon into an electron and reach a single event sensitivity of 2.5x10^{-17} after three years of data taking. The monoenergetic electron produced in the final state, is detected by a high precision tracker and a crystal calorimeter, all embedded in a large superconducting solenoid (SD) surrounded by a cosmic ray veto system. The calorimeter is complementary to the tracker, allowing an independent trigger and powerful particle identification, while seeding the track reconstruction and contributing to remove background tracks mimicking the signal. In order to match these requirements, the calorimeter should have an energy resolution of O(5)% and a time resolution better than 500 ps at 100 MeV. The baseline solution is a calorimeter composed of two disks of BaF2 crystals read by UV extended, solar blind, Avalanche Photodiode (APDs), which are under development from a JPL, Caltech, RMD consortium. In this paper, the calorimeter design, the R&D studies carried out so far and the status of engineering are described. A backup alternative setup consisting of a pure CsI crystal matrix read by UV extended Hamamatsu MPPC's is also presented., 5 pages, 6 figures
- Published
- 2016
- Full Text
- View/download PDF
42. A pure CsI calorimeter for the Belle II experiment at SuperKEKB
- Author
-
E. Bernieri, G. Corradi, D. Tagnani, G. De Nardo, Alberto Aloisio, G. Finocchiaro, F. Budano, R. de Sangro, I. M. Peruzzi, Antonio Budano, Marco Montecchi, Alessia Cemmi, Stefania Baccaro, Elisa Manoni, E. De Lucia, A. M. Rossi, M. Piccolo, P. Branchini, S. Fiore, Crisostomo Sciacca, A. Passeri, B. Oberhof, R. Giordano, M. Merola, Claudia Cecchi, Aloisio, Alberto, Baccaro, S., Bernieri, E., Branchini, P., Budano, A., Budano, F., Cecchi, C., Cemmi, A., Corradi, G., De Lucia, E., DE NARDO, Guglielmo, de Sangro, R., Finocchiaro, G., Fiore, S., Giordano, Raffaele, Manoni, E., Merola, Mario, Montecchi, M., Oberhof, B., Passeri, A., Peruzzi, I., Piccolo, M., Rossi, A., Sciacca, Crisostomo, and Tagnani, D.
- Subjects
Nuclear and High Energy Physics ,Scintillation crystal ,Physics::Instrumentation and Detectors ,Calorimetry ,01 natural sciences ,030218 nuclear medicine & medical imaging ,law.invention ,Nuclear physics ,03 medical and health sciences ,0302 clinical medicine ,KEKB ,Signal-to-noise ratio ,law ,Pure CsI ,0103 physical sciences ,Belle II ,Collider ,Instrumentation ,Nuclear and High Energy Physic ,Physics ,Scintillation crystals ,Luminosity (scattering theory) ,Calorimeter (particle physics) ,010308 nuclear & particles physics ,Detector ,Avalanche photodiode ,Upgrade ,Physics::Accelerator Physics ,High Energy Physics::Experiment - Abstract
The new SuperKEKB collider will be an upgrade of the existing KEKB electron-positron asymmetric collider, with a target luminosity of 8 × 10 35 cm − 2 s − 1 , about 40 times greater than the previous one. The accelerator upgrade is based on the novel low-emittance “nanobeams” scheme. The detector will also be upgraded to cope with the higher luminosity, pile-up and occupancy. We report on the development of the new pure CsI calorimeter for the forward region. An intensive R&D has been carried out to study the performance of pure CsI crystals with Avalanche Photodiodes readout. Results on the signal to noise ratio for different sensors and front end electronics configurations will be presented. A matrix of 16 crystals has been tested with the electron beam at the BTF facility in Frascati. Results in terms of energy resolution of this prototype will also be discussed.
- Published
- 2016
43. Experimental tests of the trigger prototype for the AMADEUS experiment based on Sci-Fi read by MPPC
- Author
-
K. Piscicchia, A. Romero Vidal, D. Tagnani, Alessandro Scordo, A. Rizzo, A. d'Uffizi, O. Vazquez Doce, M. Poli Lener, G. Corradi, Catalina Curceanu, Carolina Berucci, E. Sbardella, and M. Bazzi
- Subjects
Physics ,Nuclear and High Energy Physics ,Photon ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,business.industry ,Detector ,Semiconductor device ,01 natural sciences ,Charged particle ,Photodiode ,law.invention ,Nuclear physics ,Optics ,law ,0103 physical sciences ,Geiger counter ,Electronics ,010306 general physics ,business ,Collider ,Instrumentation - Abstract
The Multi-Pixel Photon Counter (MPPC) detectors consist of hundreds of micro silicon Avalanche PhotoDiodes (APD) working in Geiger mode. The high gain and the small dimensions typical of these devices, together with their good performances in magnetic field, make them ideal readout devices for scintillating fibers as trigger detectors in particle and nuclear physics experiments like AMADEUS, where such a system is planned to be used to trigger on charged kaons. A prototype setup for this trigger system, consisting of 5 scintillating fibers readout by 10 MPPCs, was built and tested in laboratory and mounted inside the DA Φ NE collider at LNF-Frascati to measure the back-to-back K + K − pairs emitted in the Φ - decay processes. The ad hoc readout electronics was designed and realized at Laboratori Nazionali di Frascati (INFN). A 64 channels setup, with a new dedicated electronics, was then built and characterized in the laboratory. The results of the tests are presented and discussed.
- Published
- 2012
44. CHANTI: a Fast and Efficient Charged Particle Veto Detector for the NA62 Experiment at CERN
- Author
-
G. Saracino, L. Roscilli, D. Tagnani, G. Corradi, Maddalena Napolitano, D. Di Filippo, Vito Palladino, T. Capussela, Marco Mirra, P. Massarotti, A. Vanzanella, F. Ambrosino, U. Paglia, Ambrosino, Fabio, Capussela, Tiziana, Filippo, D. Di, Massarotti, Paolo, Mirra, Marco, Napolitano, Marco, Palladino, Vito, Saracino, Giulio, Roscilli, L., Vanzanella, A., Corradi, G., Tagnani, D., and Paglia, U.
- Subjects
Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Scintillator ,NA62 experiment ,01 natural sciences ,Particle identification ,Particle detector ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Silicon photomultiplier ,Optics ,0103 physical sciences ,Straw tracker ,Detectors and Experimental Techniques ,010306 general physics ,Instrumentation ,Mathematical Physics ,Physics ,Scintillation ,010308 nuclear & particles physics ,business.industry ,Detector ,Instrumentation and Detectors (physics.ins-det) ,High Energy Physics::Experiment ,business - Abstract
This work has been performed into the frame of the NA62 experiment at CERN that aims at measuring the Branching-Ratio of the ultra-rare kaon decay K+→π+ nu nubar with 10% uncertainty - using an unseparated kaon beam of 75GeV/c - in order to test the Standard Model (SM), to look for physics beyond SM and to measure the |Vtd| element of the Cabibbo-Kobayashi-Maskawa (CKM) flavor mixing matrix. Backgrounds, which are up to 10^10 times higher than the signal, will be suppressed by an accurate measurement of the momentum of the K+ (with a silicon beam tracker named GigaTracker) and the π+ (with a straw tracker) and by a complex system of particle identification and veto detectors. A critical background can be induced by inelastic interactions of the hadron beam with the GigaTracker. Pions produced in these interactions, emitted at low angle, can reach the straw tracker and mimic a kaon decay in the fiducial region, if no other track is detected. In order to suppress this background a CHarged track ANTIcounter (CHANTI) has been designed and built in Naples. The detector consists of a series of six guard counters surrounding the beam and placed immediately after the silicon tracker. Each guard counter is made up of two layers, X and Y. Y (X) layer is composed of 24 scintillator bars arranged parallel to X (Y) direction. Each bar is triangularly shaped with a 1.7 mm diameter hole. In order to collect the light of the scintillator, a wavelength shifting (WLS) fiber is inserted into the hole of each bar. The fiber is mirrored at one side and is read by a Hamamatsu silicon photomultiplier (SiPM) at the other side. In this thesis the design philosophy, the construction procedure and the quality tests, adopted during the assembly of the detector, are reported. A careful calibration procedure of the frontend electronics has been setup. It is made up of two different stage. The first one is used to set bias voltage of the SiPMs and to read their current; it also gives a fast amplification of the signal before passing them to the second stage in which a comparator gives an LVDS output of duration equal to the time a signal is above a given threshold. A simulation of the scintillation bar, that includes all the optical processes inside this single channel of the CHANTI, and the complete digitization of the signals have been developed. The performance of the detector have been evaluated both in the laboratory facilities in Naples, with cosmic rays, and in the experimental area of the NA62 experiment with real beam condition. In particular the efficiency, time and space resolutions and accidental veto rate of the detector have been determined analysing the data collected during the first NA62 physics run in 2015.
- Published
- 2015
45. Performance of silicon-drift detectors in kaonic atom X-ray measurements
- Author
-
V. Lucherini, T. Ponta, O. Vazquez Doce, H. Tatsuno, A. M. Bragadireanu, Michael Cargnelli, Diana Sirghi, A. Romero Vidal, Hexi Shi, Luca Bombelli, D. Pietreanu, G. A. Beer, Tommaso Frizzi, M. Iliescu, Johann Marton, M. Bazzi, Florin Sirghi, B. Girolami, Carlo Fiorini, A. Rizzo, T. Ishiwatari, Eberhard Widmann, F. Ghio, V. Tudorache, Ryugo S. Hayano, Alessandro Scordo, C. Guaraldo, Masahiko Iwasaki, Shinji Okada, G. Corradi, P. Levi Sandri, Johann Zmeskal, A. d'Uffizi, P. Kienle, A. Longoni, Catalina Curceanu, and A. Tudorache
- Subjects
Physics ,Nuclear and High Energy Physics ,sezele ,Silicon drift detector ,Silicon ,Hydrogen ,Strong interaction ,X-ray detector ,chemistry.chemical_element ,law.invention ,Nuclear physics ,Deuterium ,chemistry ,law ,Atom ,Physics::Atomic Physics ,Atomic physics ,Collider ,Instrumentation - Abstract
Large-area silicon drift detectors (SDDs) were used for the first time in the background condition of a collider for precision spectroscopy of the kaonic atom X-rays in the SIDDHARTA experiment for the study of the strong interaction in a low-energy regime. The measurements were performed at the DA Φ NE electron–positron collider (LNF, Italy), using gas targets of hydrogen, deuterium, helium-3, and helium-4. A test measurement using the kaonic 4 He X-rays showed an excellent performance of the SDD devices under the beam conditions, and a good background suppression capability using the time correlation between the kaonic atom X-rays and the back-to-back correlated K + K − pairs produced by φ decays.
- Published
- 2011
46. Kaon-nucleon/nuclei interaction studies by kaonic atoms measurements: the SIDDHARTA experiment at DAΦNE
- Author
-
Ryugo S. Hayano, Tommaso Frizzi, Hexi Shi, C. Guaraldo, G. Corradi, Johann Marton, Florin Sirghi, H. Tatsuno, Shinji Okada, G. A. Beer, A. dʼUffizi, E. Wiedmann, T. Ponta, M. Iliescu, A. M. Bragadireanu, Carlo Fiorini, Catalina Curceanu, Antonio Francesco Longoni, T. Ishiwatari, P. Kienle, D. Pietreanu, M. Iwasaki, V. Tudorache, Michael Cargnelli, F. Ghio, A. Tudorache, A. Rizzo, P. Levi Sandri, V. Lucherini, Luca Bombelli, J. Zmeskal, M. Bazzi, B. Girolami, Alessandro Scordo, O. Vazquez Doce, Diana Sirghi, and A. Romero Vidal
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Silicon drift detector ,Physics::Instrumentation and Detectors ,Kaonic hydrogen ,Nuclear Theory ,chemistry.chemical_element ,Atomic and Molecular Physics, and Optics ,Nuclear physics ,Helium-4 ,chemistry ,Deuterium ,Helium-3 ,Atom ,Physics::Atomic Physics ,Nuclear Experiment ,Nucleon ,Helium - Abstract
The SIDDHARTA experiment (SIlicon Drift Detector for Hadronic Atom Research by Timing Application) had the aim to perform a precise measurement of K-series kaonic hydrogen x-rays and the first-ever measurement of the kaonic deuterium x-rays to determine the strong-interaction energy-level shifts and widths of the lowest lying atomic states. These measurements offer a unique possibility to precisely determine the isospin-dependent kaon-nucleon(KN) scattering lengths which are directly connected with the physics of the KN interaction. The experiment combined the excellent low-energy kaon beam generated at DAΦNE, allowing to use gaseous targets, with excellent fast X-rays detectors: Silicon Drift Detectors. SIDDHARTA was installed on DAΦNE in autumn 2008 and took data till late 2009. Apart of the kaonic hydrogen and kaonic deuterium measurements, we have performed the kaonic helium transitions to the 2 p level (L-lines) measurements: for the first time in a gaseous target for kaonic helium 4 and for the first time ever for kaonic helium 3. In this paper, an overview of this experiment and preliminary results are presented, together with future plans.
- Published
- 2011
47. Applications in beam diagnostics with triple GEM detectors
- Author
-
M. Poli Lener, Marco Pistilli, D. Tagnani, G. Corradi, P. Valente, Bruno Buonomo, Fabrizio Murtas, and Giovanni Mazzitelli
- Subjects
Physics ,High rate ,Nuclear and High Energy Physics ,Neutron monitor ,Muon ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,business.industry ,Detector ,Readout electronics ,Time resolution ,Space resolution ,01 natural sciences ,Optics ,0103 physical sciences ,Physics::Accelerator Physics ,Detectors and Experimental Techniques ,010306 general physics ,business ,Instrumentation ,Beam (structure) - Abstract
The development of different detectors based on GEM technology, mainly to be used for beam diagnostic, is described. The use of GEM foils for detector construction started in Frascati on 2002 with the R&D for LHCb Muon Chambers placed at small angle. Ever since several triple GEM chambers have been built for different applications. The results obtained in several beam tests have shown high performances: high rate capability ( > 50 MHz / cm 2 ), good time resolution ( ∼ 4 ns ), good space resolution O ( 200 μ m ) , and good aging resistance after 2 C / cm 2 of integrated charge. Recent developments on readout electronics and power supply for portable detectors are presented.
- Published
- 2010
48. Precision spectroscopy of kaonic helium-3 and helium-4 3d→ 2p X-rays
- Author
-
T. Ishiwatari, M. Bazzi, H. Bhang, G. Beer, L. Bombelli, A. M. Bragadireanu, M. Cargnelli, S. Choi, G. Corradi, C. Curceanu, A. d’Uffizi, S. Enomoto, C. Fiorini, T. Frizzi, H. Fujioka, Y. Fujiwara, F. Ghio, B. Girolami, C. Guaraldo, T. Hashimoto, R. S. Hayano, T. Hiraiwa, M. Iio, M. Iliescu, S. Ishimoto, K. Itahashi, M. Iwasaki, P. Kienle, H. Kou, P. Levi Sandri, A. Longoni, V. Lucherini, J. Marton, Y. Matsuda, H. Noumi, H. Ohnishi, S. Okada, H. Outa, D. Pietreanu, T. Ponta, A. Rizzo, A. Romero Vidal, F. Sakuma, M. Sato, A. Scordo, M. Sekimoto, H. Shi, D. L. Sirghi, F. Sirghi, T. Suzuki, K. Tanida, H. Tatsuno, M. Tokuda, D. Tomono, A. Toyoda, K. Tsukada, A. Tudorache, V. Tudorache, O. Vazquez Doce, E. Widmann, B. Wünschek, T. Yamazaki, J. Zmeskal, Volker Crede, Paul Eugenio, and A. Ostrovidov
- Subjects
Physics ,Elastic scattering ,Meson ,sezele ,chemistry.chemical_element ,Nuclear physics ,Helium-4 ,chemistry ,Isospin ,Helium-3 ,Atomic physics ,Isotopes of helium ,Helium ,Exotic atom - Abstract
Recently, the shift of the kaonic helium-4 2p state was precisely determined by the E570 and SIDDHARTA experiments. Prior to the experiment by E570, the average of three earlier experimental results showed - 43±8 eV, while most of the theoretical calculations give ∼ 0 eV. This five-sigma discrepancy between theory and experiment was known as the "kaonic helium puzzle". A recent theoretical model showed a possible resonance-like shift of maximum 10 eV for a certain value of a deep antikaon-nucleon interaction potential, which is different in helium 3 and helium 4. The E570 experiment determined the shift of the kaonic helium-4 2p state as +2±2 (stat)±2 (sys) eV in 2007. The SIDDHARTA experiment determined the shift as 0±6 (stat)±2 (sys) eV in 2009. The results of these experiments resolved the long-standing puzzle. A new experiment of the kaonic helium-3 X-ray measurement is being prepared by the J-PARC E17 collaborators, and the kaonic helium-3 X-ray data taken very recently by the SIDDHARTA experiment are on the way to be analyzed. The results of the E570, E17 and SIDDHARTA experiments examine the strong interaction for light nuclei with different isospin, and test furthermore recent theoretical predictions. © 2010 American Institute of Physics.
- Published
- 2010
49. Kaonic helium-4 X-ray measurement in SIDDHARTA
- Author
-
T. Ishiwatari, G. A. Beer, Michael Cargnelli, Johann Marton, Florin Sirghi, B. Girolami, A. Rizzo, Diana Sirghi, Hexi Shi, Luca Bombelli, A. Tudorache, Alessandro Scordo, A. Romero Vidal, Dorel Pietreanu, T. Ponta, P. Kienle, V. Tudorache, H. Tatsuno, C. Guaraldo, G. Corradi, A. M. Bragadireanu, Tommaso Frizzi, V. Lucherini, A. Longoni, M. Iliescu, Shinji Okada, A. d'Uffizi, O. Vazquez Doce, Ryugo S. Hayano, Catalina Curceanu, Carlo Fiorini, M. Bazzi, P. Levi Sandri, Johann Zmeskal, Eberhard Widmann, F. Ghio, and Masahiko Iwasaki
- Subjects
Physics ,Nuclear and High Energy Physics ,Physics::Instrumentation and Detectors ,Kaonic hydrogen ,Strong interaction ,X-ray ,Compton scattering ,chemistry.chemical_element ,law.invention ,Nuclear physics ,Helium-4 ,chemistry ,law ,High Energy Physics::Experiment ,Atomic physics ,Collider ,Helium ,Exotic atom - Abstract
The kaonic helium-4 3 d → 2 p X-ray transition was measured in a gaseous target, where Compton scattering in helium is negligible. The X-rays were detected with large-area Silicon Drift Detectors (SDDs) using the timing information of the K + K − pairs produced by ϕ decays at the DAΦNE e + e − collider. A new value of the strong interaction shift of the kaonic 4He 2p state was determined to be 0 ± 6 (stat) ± 2 (syst) eV , which confirms the recently obtained result by the KEK-PS E570 group.
- Published
- 2009
50. The OPERA VETO system
- Author
-
A. Longhin, C. Gustavino, E. Carrara, A. Bertolin, A. Lindozzi, Luca Stanco, A. Candela, V. Sugonyaev, M. D'Incecco, E. Tatananni, G. Felici, A. Mengucci, A. Di Giovanni, S. Dusini, A. Garfagnini, R. Brugnera, F. Dal Corso, A. Bergnoli, and G. Corradi
- Subjects
Physics ,Nuclear physics ,Nuclear and High Energy Physics ,Resistive touchscreen ,Large Hadron Collider ,Opera ,Veto ,Detector ,Neutrino ,Instrumentation ,Beam (structure) - Abstract
OPERA is an underground experiment to search for ν τ appearance from a pure ν μ beam produced at CERN. To flag the events due to the neutrino interactions with the rock surrounding the OPERA detector, a large VETO system, based on the use of Glass Resistive Plate Chambers (GRPCs) has been realized. We describe the VETO system, the GRPCs, the tests performed on the chambers before their installation. Presently, the VETO is in phase of commissioning. The first results of its underground operation are also presented.
- Published
- 2009
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.