88 results on '"Fulvio Militello"'
Search Results
2. ReMKiT1D - A framework for building reactive multi-fluid models of the tokamak scrape-off layer with coupled electron kinetics in 1D.
- Author
-
Stefan Mijin, Dominic Power, Ryan Holden, William Hornsby, David Moulton, and Fulvio Militello
- Published
- 2024
- Full Text
- View/download PDF
3. Convolutional Neural Networks for the Identification of Filaments from Fast Visual Imaging Cameras in Tokamak Reactors.
- Author
-
Barbara Cannas, Sara Carcangiu, Alessandra Fanni, Ivan Lupelli, Fulvio Militello, Augusto Montisci, Fabio Pisano, Giuliana Sias, and Nick Walkden
- Published
- 2020
- Full Text
- View/download PDF
4. SOL-KiT - Fully implicit code for kinetic simulation of parallel electron transport in the tokamak Scrape-Off Layer.
- Author
-
Stefan Mijin, Abetharan Antony, Fulvio Militello, and Robert J. Kingham
- Published
- 2021
- Full Text
- View/download PDF
5. Introduction
- Author
-
Fulvio Militello
- Published
- 2022
- Full Text
- View/download PDF
6. Sheath Physics
- Author
-
Fulvio Militello
- Published
- 2022
- Full Text
- View/download PDF
7. Atomic, Molecular and Plasma-Surface Physics
- Author
-
Fulvio Militello
- Published
- 2022
- Full Text
- View/download PDF
8. Basic Exhaust Concepts
- Author
-
Fulvio Militello
- Published
- 2022
- Full Text
- View/download PDF
9. Filamentary Transport
- Author
-
Fulvio Militello
- Published
- 2022
- Full Text
- View/download PDF
10. Radiation and Detachment
- Author
-
Fulvio Militello
- Published
- 2022
- Full Text
- View/download PDF
11. Plasma Equations
- Author
-
Fulvio Militello
- Published
- 2022
- Full Text
- View/download PDF
12. Boundary Plasma Physics
- Author
-
Fulvio Militello
- Published
- 2022
- Full Text
- View/download PDF
13. Conventional and Alternative Divertors
- Author
-
Fulvio Militello
- Published
- 2022
- Full Text
- View/download PDF
14. Towards an automatic filament detector with a Faster R-CNN on MAST-U
- Author
-
Alessandra Fanni, Fulvio Militello, Giuliana Sias, T. Farley, Nick Walkden, Sara Carcangiu, Augusto Montisci, Barbara Cannas, and Fabio Pisano
- Subjects
Toroid ,Computer science ,business.industry ,Mechanical Engineering ,Deep learning ,Detector ,Cognitive neuroscience of visual object recognition ,Plasma ,01 natural sciences ,010305 fluids & plasmas ,Visible camera ,Protein filament ,Nuclear Energy and Engineering ,0103 physical sciences ,General Materials Science ,Computer vision ,Artificial intelligence ,010306 general physics ,business ,Image object ,Civil and Structural Engineering - Abstract
In the present magnetically confined plasmas, the prediction of particle loading on material surfaces is a primary concern in view of the protection of plasma facing components for next step devices. Thus, an understanding of filament dynamics is needed. In this context, this work aims to develop an automatic detector for filaments arising in the MAST-U plasma. The identification of the filaments has been done starting from 2D images acquired with a fast visible camera. Therefore, it can be faced as an image object recognition problem. Currently, the object recognition is a key output of deep learning and machine learning algorithms. In this paper, a database of several thousands of images generated by a synthetic diagnostic, which reproduces the statistical properties of experimental filaments in terms of position, size and intensity has been used. The synthetic images are pre-processed by mapping them onto the toroidal midplane of the machine. Then a Faster R-CNN is customized to the problem of identifying the filaments. In particular, in order to enhance the performance of the detector, a suitable definition of the target-boxes defining the filament positions and sizes is adopted with good results.
- Published
- 2019
- Full Text
- View/download PDF
15. The operational space for divertor power exhaust in DEMO with a super-X divertor
- Author
-
M. Wischmeier, Leena Aho-Mantila, H. Reimerdes, D. P. Coster, T. Lunt, David Moulton, M. Wensing, Fabio Subba, L. Xiang, and Fulvio Militello
- Subjects
Physics ,Nuclear and High Energy Physics ,Operational space (for divertor power exhaust) ,Divertor ,Nuclear engineering ,Lengyel model ,Radiative power dissipation ,Radiation ,Condensed Matter Physics ,Space (mathematics) ,7. Clean energy ,01 natural sciences ,010305 fluids & plasmas ,Power (physics) ,radiation ,Multi-fluid modelling ,Physics::Plasma Physics ,0103 physical sciences ,eirene ,Super-X divertor configuration ,010306 general physics - Abstract
SOLPS-ITER simulations of the European DEMO reactor with a Super-X divertor, which has larger major radius at the outer target and increased connection length, show an increased operational space for divertor power exhaust compared to the conventional single-null configuration. Using a multi-fluid approach with fluid neutrals and charge-state bundling of impurities, we assessed the existence and boundaries of the operational space in the single-null and Super-X configurations by carrying out fuelling, seeding and power scans. Compared to the conventional single-null divertor, the Super-X divertor offers lower impurity concentration (factor ∼2 lower) at the same main plasma density, and consistent with this, it has lower main plasma density at the same impurity concentration level. This observed difference is in line with the simple analytical Lengyel model predictions resulting from the increased connection length in the super-X configuration. DEMO with a Super-X divertor demonstrates remarkable robustness against increases in input power, and in this study is able to exhaust the maximum expected steady-state separatrix-crossing power of 300 MW while maintaining acceptable impurity concentration along the separatrix This is something that was not possible in the single-null configuration in this study. This robustness of the Super-X divertor lies mostly in its capability to sufficiently dissipate power in its divertor via argon (Ar) radiation at acceptable Ar concentration, which is related to two factors: long (with respect to single-null) parallel connection length from the upstream to the outer target and higher but tolerable extrinsic impurity concentration at higher input powers. Finally, consistent with neon-seeded simulations of ITER, it is observed in all our simulations that the plasma density drops with increasing Ar concentration given fixed power input. We find that as the Ar content increases, the accompanying enhancement of Ar radiation reduces the power available for deuterium (D) to be ionized, thus limiting the D ionization particle source, and consequently reducing the plasma density.
- Published
- 2021
- Full Text
- View/download PDF
16. Comparing two- and three-dimensional models of scrape-off layer turbulent transport
- Author
-
Benjamin Dudson, John Omotani, Fabio Riva, Thomas Nicholas, and Fulvio Militello
- Subjects
Plasma Physics (physics.plasm-ph) ,Nuclear Energy and Engineering ,Fluid Dynamics (physics.flu-dyn) ,FOS: Physical sciences ,Physics - Fluid Dynamics ,Condensed Matter Physics ,Physics - Plasma Physics - Abstract
There exists a large body of previous work using reduced two-dimensional models of the SOL, which model fluctuations in the drift-plane but approximate parallel transport with effective loss terms. Full size three-dimensional simulations of SOL turbulence in experimental geometries are now possible, but are far more computationally expensive than 2D models. We therefore use a flux-tube geometry model of the scrape-off layer to compare the results of 2D simulations to 3D simulations with a similar setup, looking for systematic differences. Overall there is good agreement in the basic radial profiles, probability distribution functions, and power spectra of fluctuations. However, the average temperature is over-predicted in 2D relative to 3D, and we explain the difference in terms of the effect of geometrical simplifications of devices at low power. Varying geometric parameters, we find that supersonic flow in the divertor leg, which occurs because our simulations do not include neutrals and so represent low-recycling conditions, means that the divertor leg length only has a weak effect on the output. Finally, we examine the effect of altering the magnitude of source and sink terms in 2D, concluding that they cannot easily be used to recreate both the density and temperature profiles observed in 3D simultaneously., 14 pages, 24 figures, submitted to Plasma Physics and Controlled Fusion
- Published
- 2022
- Full Text
- View/download PDF
17. Impact of fine divertor geometrical features on the modelling of JET corner configurations
- Author
-
Fulvio Militello, H. Bufferand, G. Ciraolo, C. Giroud, N. Vianello, Patrick Tamain, Yannick Marandet, David Moulton, Jet Contributors, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), EURATOM/UKAEA, Culham Science Centre [Abingdon], Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Ricerca Formazione Innovazione (Consorzio RFX), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), The National Fusion Research Institute (NFRI), Korea Nuclear Society, The JET contributors, European Project: 633053,H2020,EURATOM-Adhoc-2014-20,EUROfusion(2014), JET contributors, ANR-10-EQPX-0029,EQUIP@MESO,Equipement d'excellence de calcul intensif de Mesocentres coordonnés - Tremplin vers le calcul petaflopique et l'exascale(2010), Culham Centre for Fusion Energy (CCFE), CEA, IRFM, F-13108, Saint Paul lez Durance, France, Consiglio Nazionale delle Ricerche (CNR), icard, valerie, and Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortium - EUROfusion - - H20202014-01-01 - 2018-12-31 - 633053 - VALID
- Subjects
Nuclear and High Energy Physics ,Field line ,Materials Science (miscellaneous) ,corner ,edge ,Flux ,Baffle ,Edge (geometry) ,01 natural sciences ,[PHYS] Physics [physics] ,010305 fluids & plasmas ,modelling ,Physics::Plasma Physics ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,Point (geometry) ,tokamak ,plasma ,ComputingMilieux_MISCELLANEOUS ,fluid ,010302 applied physics ,Physics ,[PHYS]Physics [physics] ,Jet (fluid) ,Divertor ,TK9001-9401 ,Mechanics ,Plasma ,Nuclear Energy and Engineering ,[PHYS.PHYS.PHYS-PLASM-PH] Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,Nuclear engineering. Atomic power - Abstract
The modelling of JET corner configurations, in which the strike points are positioned deep in the corners of the divertor, is extremely challenging for edge plasma fluid modelling tools. To circumvent this technical limitation, a geometrical approximation has been proposed, consisting in considering an artificial minor modification of the geometry of the divertor targets plates. In this paper, we investigate how significantly this approximation impacts the output of transport simulations. Using the SOLEDGE2D-EIRENE transport code which has the unique capability to be able to cope with both the full and the approximated geometry, we have performed a density scan in H-mode for pulses in which the outer strike-point lies in the corner of the divertor. We report here how simulations in the artificial geometry differ from the ones in unaltered geometry. At the exception of low density cases, mid-plane profiles in the closed field lines region and the near scrape-off layer are little impacted. Further out however, in flux-surfaces that are concerned by the geometrical modification, we find that modifying the geometry leads to a strong overestimate of the plasma density. The density perturbation is not local and concerns the whole flux surfaces. Although the divertor geometry is modified only on the outer side, the largest impact is found at the inner divertor where densities are systematically overestimated by a factor that can exceed 10 in low density cases in the far Scrape-Off Layer (SOL) and temperature underestimated by 10 to 20 eV in most of the studied density range. The near SOL and strike point peak values are also impacted in the same direction with density changes by a factor of 2. As a consequence, the threshold to detachment of the inner divertor is found lower in the approximate geometry than in the unaltered one. Due to the large flux expansion between the outer and the inner target, the difference in plasma is especially sensitive at the top of the inner divertor baffle, which could have consequence on the evaluation of physical sputtering at that critical location.
- Published
- 2021
- Full Text
- View/download PDF
18. The role of edge plasma parameters in H-mode density limit on the JET-ILW
- Author
-
A. Huber, J. Flanagan, H. J. Sun, J. Fessey, D. C. McDonald, E. de la Luna, S. Cramp, J. R. Harrison, M. Maslov, Robert James Goldston, Fulvio Militello, and Xueqiao Xu
- Subjects
Physics ,Nuclear and High Energy Physics ,Jet (fluid) ,Plasma parameters ,Physics::Plasma Physics ,Mode (statistics) ,Density limit ,Edge (geometry) ,Atomic physics ,ddc:620 ,Condensed Matter Physics - Abstract
A study of a dataset of JET H-mode plasma with the Be/W ITER-like wall (JET-ILW) shows that reaching the edge MHD ballooning limit leads to confinement degradation. However, unlike JET plasmas with a carbon wall (JET-C), the JET-ILW plasmas stay in a marginal dithering phase for a relatively long period, associated with a higher (≈20%) H-mode density limit (HDL) than JET-C equivalents. This suggests that ITER could be operated in H-mode with higher density than the scaling based on carbon wall devices, but likely with a dithering phase plasma with lower confinement. A new, reliable estimator for JET E r, min has been derived by combining HRTS measurements of pedestal gradient and edge-SOL decay lengths. JET radial E r ETB wells are observed in the range of −15 to −60 kV m−1 in high performance H-modes, consistent with previous CXRS results in ASDEX Upgrade. The results imply that a higher positive E × B shear in the near SOL plays a role in sustaining a marginal phase in JET-ILW which leads to a higher HDL than that in JET-C. The results of the JET-ILW dataset show agreement with the Goldston finite collisionality HD model for SOL broadening at high collisionality. A hypothesis for the dithering H-mode phase is proposed: as n e,SOL increases, ν ∗,SOL increases, SOL broadens, E r shear decreases, triggers L-mode; n e drops, ν ∗,SOL decreases, SOL becomes narrower, and E r shear increases, triggering H-mode, resulting in a cycle of H–L–H- oscillations. For burning plasma devices, such as ITER, operating just below the MHD limit for the dithering phase could be a promising regime for maximising core density, and fusion performance while minimising plasma-material interaction. The oscillatory signal during the dithering phase could be used as a precursor of undesirable plasma performance for control purposes.
- Published
- 2021
- Full Text
- View/download PDF
19. Impact of plasma-wall interaction and exhaust on the EU-DEMO design
- Author
-
C. Vorpahl, J. Gerardin, Irena Ivanova-Stanik, Wolfgang Biel, M. Cavedon, Stylianos Varoutis, Mattia Siccinio, M. Firdaouss, C. Bachmann, Volker Hauer, Francesco Maviglia, Fulvio Militello, R. Kembleton, E. Fable, Fabio Subba, G. Federici, F. Janky, Maviglia, F, Siccinio, M, Bachmann, C, Biel, W, Cavedon, M, Fable, E, Federici, G, Firdaouss, M, Gerardin, J, Hauer, V, Ivanova-Stanik, I, Janky, F, Kembleton, R, Militello, F, Subba, F, Varoutis, S, and Vorpahl, C
- Subjects
Disruptions ,Divertor reattachment ,ELMs ,EU-DEMO ,Limiters ,Transients ,Nuclear and High Energy Physics ,Work (thermodynamics) ,Materials science ,Steady state (electronics) ,Materials Science (miscellaneous) ,Nuclear engineering ,01 natural sciences ,010305 fluids & plasmas ,Limiter ,0103 physical sciences ,ddc:530 ,010302 applied physics ,Transient ,Physics ,Divertor ,Plasma ,Dissipation ,lcsh:TK9001-9401 ,Power (physics) ,Nuclear Energy and Engineering ,Heat flux ,lcsh:Nuclear engineering. Atomic power ,Disruption ,ELM ,ddc:624 - Abstract
In the present work, the role of plasma facing components protection in driving the EU-DEMO design will be reviewed, focusing on steady-state and, especially, on transients. This work encompasses both the first wall (FW) as well as the divertor. In fact, while the ITER divertor heat removal technology has been adopted, the ITER FW concept has been shown in the past years to be inadequate for EU-DEMO. This is due to the higher foreseen irradiation damage level, which requires structural materials (like Eurofer) able to withstand more than 5 dpa of neutron damage. This solution, however, limits the tolerable steady-state heat flux to ~1 MW/m2, i.e. a factor 3–4 below the ITER specifications. For this reason, poloidally and toroidally discontinuous protection limiters are implemented in EU-DEMO. Their role consists in reducing the heat load on the FW due to charged particles, during steady state and, more importantly, during planned and off-normal plasma transients. Concerning the divertor configuration, EU-DEMO currently assumes an ITER-like, lower single null (LSN) divertor, with seeded impurities for the dissipation of the power. However, this concept has been shown by numerous simulations in the past years to be marginal during steady-state (where a detached divertor is necessary to maintain the heat flux below the technological limit and to avoid excessive erosion) and unable to withstand some relevant transients, such as large ELMs and accidental loss of detachment. Various concepts, deviating from the ITER design, are currently under investigation to mitigate such risks, for example in-vessel coils for strike point sweeping in case of reattachment, as well as alternative divertor configurations. Finally, a broader discussion on the impact of divertor protection on the overall machine design is presented.
- Published
- 2021
- Full Text
- View/download PDF
20. Edge turbulence in ISTTOK:A multi-code fluid validation
- Author
-
Rogerio Jorge, Davide Galassi, Fabio Riva, Guido Ciraolo, N. Nace, Fulvio Militello, Eric Serre, Anders Nielsen, Patrick Tamain, Carlos A. Silva, Jeppe Olsen, Jens Madsen, J. Juul Rasmussen, Ben Dudson, Nicolas Fedorczak, Paolo Ricci, and William Agnelo Gracias
- Subjects
Physics ,Tokamak ,Turbulence ,Replicate ,Plasma ,Edge (geometry) ,Condensed Matter Physics ,Domain (mathematical analysis) ,Computational physics ,law.invention ,Nuclear Energy and Engineering ,law ,Validation ,Multi code ,ISTTOK ,Simulation - Abstract
Fluid models used to study the edge plasma region need to be benchmarked against similar conditions given that models can strongly differ in complexity and therefore the results they produce. Via this validation study undertaken through the framework of EUROfusion Enabling Research, four state-of-the art models—GBS, Hermes/BOUT++, hot-edge-sol-electrostatic and TOKAM3X—are compared to experimental plasma turbulence measurements on the ISTTOK tokamak. Statistical comparisons of simulation and experiment data show that fluid models used here can replicate most of the experiment in terms of I sat and V float fluctuations despite their differences. Furthermore, it is shown that without including more complex information (like core turbulence information and domain geometry details and magnetic topological aspects) in fluid models, the results recovered vary from their experimental counterparts. Via the simulations using these codes, it is demonstrated that fluid models continue to be a good cost-effective tool in recovering many global aspects of edge plasma behaviour.
- Published
- 2021
- Full Text
- View/download PDF
21. Preliminary analysis of alternative divertors for DEMO
- Author
-
M. Reinhart, Paolo Ricci, G. Ramogida, A. Herrmann, R. Kembleton, Pierluigi Fanelli, A. Wilde, G. Di Gironimo, Paolo Innocente, Leena Aho-Mantila, Fabio Riva, Anders Nielsen, Stylianos Varoutis, N. Fedorczak, H. Reimerdes, G. Ciraolo, D. Marzullo, L. Xiang, A. Stegmeir, T. Body, W. Treutterer, D. P. Coster, M. Wischmeier, John Omotani, Fulvio Militello, A. S. Thrysøe, G. Calabrò, S. Merriman, J. Lilburne, Fabio Subba, David Moulton, H. Bufferand, Roberto Ambrosino, T. Lunt, P. Tamain, W. Suttrop, M. Teschke, M. Wensing, Militello, F., Aho-Mantila, L., Ambrosino, R., Body, T., Bufferand, H., Calabro, G., Ciraolo, G., Coster, D., Di Gironimo, G., Fanelli, P., Fedorczak, N., Herrmann, A., Innocente, P., Kembleton, R., Lilburne, J., Lunt, T., Marzullo, D., Merriman, S., Moulton, D., Nielsen, A. H., Omotani, J., Ramogida, G., Reimerdes, H., Reinhart, M., Ricci, P., Riva, F., Stegmeir, A., Subba, F., Suttrop, W., Tamain, P., Teschke, M., Thrysoe, A., Treutterer, W., Varoutis, S., Wensing, M., Wilde, A., Wischmeier, M., and Xiang, L. Y.
- Subjects
Nuclear and High Energy Physics ,Computer science ,Materials Science (miscellaneous) ,Nuclear engineering ,7. Clean energy ,01 natural sciences ,010305 fluids & plasmas ,Alternative divertor configurations ,DEMO ,Divertor design ,Margin (machine learning) ,0103 physical sciences ,ddc:530 ,Baseline (configuration management) ,Resilience (network) ,Engineering analysis ,010302 applied physics ,Divertor ,Physics ,lcsh:TK9001-9401 ,Power (physics) ,Nuclear Energy and Engineering ,Electromagnetic coil ,Solidity ,lcsh:Nuclear engineering. Atomic power ,Alternative divertor configuration - Abstract
A physics and engineering analysis of alternative divertor configurations is carried out by examining benefits and problems by comparing the baseline single null solution with a Snowflake, an X- and a Super-X divertor. It is observed that alternative configurations can provide margin and resilience against large power fluctuations, but their engineering has intrinsic difficulties, especially in the balance between structural solidity and accessibility of the components and when the specific poloidal field coil positioning poses further constraints. A hybrid between the X- and Super-X divertor is proposed as a possible solution to the integration challenge.
- Published
- 2021
- Full Text
- View/download PDF
22. Scoping the characteristics and benefits of a connected double-null configuration for power exhaust in EU-DEM
- Author
-
Xavier Bonnin, D. P. Coster, M. Wensing, Mattia Siccinio, M. Wischmeier, David Moulton, Roberto Ambrosino, T. Lunt, Fulvio Militello, Fabio Subba, H. Reimerdes, L. Xiang, Leena Aho-Mantila, Aho-Mantila, L., Subba, F., Coster, D. P., Xiang, L., Militello, F., Lunt, T., Moulton, D., Reimerdes, H., Wensing, M., Wischmeier, M., Ambrosino, R., Bonnin, X., and Siccinio, M.
- Subjects
Nuclear and High Energy Physics ,Work (thermodynamics) ,Materials Science (miscellaneous) ,Nuclear engineering ,divertor physics ,Double-null ,Radiation ,Edge (geometry) ,01 natural sciences ,7. Clean energy ,operating space ,SOLPS-ITER ,010305 fluids & plasmas ,Radiation pattern ,DEMO ,Divertor physics ,Operating space ,Power exhaust ,0103 physical sciences ,solps-iter ,double-null ,Divertor physic ,010302 applied physics ,Physics ,Null (radio) ,power exhaust ,Divertor ,Plasma ,demo ,lcsh:TK9001-9401 ,Power (physics) ,Nuclear Energy and Engineering ,lcsh:Nuclear engineering. Atomic power - Abstract
A double-null configuration is being considered for the EU-DEMO, due to its potential benefits for power exhaust arising from the use of two active divertors and magnetically disconnected low- and high-field sides. Using systematic parameter scans in fluid simulations, we have investigated the divertor power exhaust in the EU-DEMO in a connected double-null configuration, and compared the edge plasma properties to those obtained in a single-null configuration under detached conditions anticipated for reactor operation. Neglecting drift effects and kinetic behaviour of the neutrals, no clear benefits of the double-null configuration could yet be identified for the radiation pattern and power mitigation on open field lines. Future work should address the aforementioned physics as well as the effect of the additional X-point on core radiation.
- Published
- 2021
- Full Text
- View/download PDF
23. Kinetic effects in parallel electron energy transport channels in the scrape-off layer
- Author
-
Stefan Mijin, Fulvio Militello, John Omotani, Robert Kingham, Sarah Newton, and Imperial College London
- Subjects
Electron energy ,Materials science ,Nuclear Energy and Engineering ,Physics::Plasma Physics ,0299 Other Physical Sciences ,Fluids & Plasmas ,0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics ,Electron ,Condensed Matter Physics ,Kinetic energy ,Layer (electronics) ,Molecular physics ,Energy transport - Abstract
We present an analysis of parallel electron energy transport in the scrape-off layer (SOL), considering the convective and conductive channels, as well as the radiation and neutral inelastic energy transfer channels involving atomic deuterium. Kinetic effects in both equilibria and conductive transients are explored by utilizing the capability of the SOL-KiT code to treat electrons as either a fluid or kinetically. We find kinetic effects in multiple channels, with an emphasis on those occurring during the investigated conductive transients. Energetic electron effects in the heat flux, as well as a modification of ionization rates of up to 40% compared to Maxwellian rates during perturbations in detached conditions, are reported and discussed.
- Published
- 2020
24. Kinetic and fluid simulations of parallel electron transport during equilibria and transients in the scrape-off layer
- Author
-
Sarah Newton, John Omotani, Robert Kingham, Fulvio Militello, and Stefan Mijin
- Subjects
electron ,Materials science ,simulatio ,Fluids & Plasmas ,0299 Other Physical Sciences ,scrape-off layer ,kinetic ,PLASMAS ,CODE ,Electron ,Kinetic energy ,Molecular physics ,Physics, Fluids & Plasmas ,parallel ,IMPLICIT ,COLLISIONAL-RADIATIVE MODEL ,EQUATION ,fluid ,Science & Technology ,Physics ,Condensed Matter Physics ,Electron transport chain ,Nuclear Energy and Engineering ,Physical Sciences ,HEAT-FLUX ,0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics ,DIVERTOR ,Layer (electronics) - Abstract
We present the first parallel electron transport results obtained using the newly developed 1D transport code SOL-KiT. With the capability to switch between consistent kinetic and fluid models for the electrons, we explore and report the differences in both equilibrium and transient simulations. Significant kinetic effects are found during transients, especially in the behaviour of the electron sheath heat transmission coefficient, which shows up to an eightfold increase. Equilibria are obtained for an input power scan with parameters relevant to medium size tokamaks. Detached equilibria are found to persist to higher input powers when electrons are treated kinetically. Furthermore, non-monotonic behaviour of the electron sheath heat transmission coefficient is observed in the power scan, with values being up to 40% above the classical value. We discuss the implications of the pr
- Published
- 2020
25. Investigation of the role of hydrogen molecules in 1D simulation of divertor detachment
- Author
-
Yulin Zhou, Benjamin Dudson, Fulvio Militello, Kevin Verhaegh, and Omkar Myatra
- Subjects
Nuclear Energy and Engineering ,Condensed Matter Physics - Abstract
The role of neutral and charged hydrogenic molecules in detached regimes of tokamak plasmas is investigated using a simplified 1D numerical model. Using MAST Upgrade like conditions, simulations are implemented to study the rollover of target flux Γ in upstream density scan. It is found that if H 2 and H 2 + are considered in simulations a lower target temperature and a larger upstream density will be required to trigger divertor detachment under the same input power and particle flux, and the critical detachment threshold (the critical ratio of upstream static pressure to the power entering the recycling region) is found to be p up P recl ∼ 8.1 N M W − 1 at rollover. Molecule–plasma interactions are found to be as crucial as atom–plasma interactions during divertor detachment, both of which account for the majority of plasma momentum loss in the cases studied here. Further analysis of the momentum loss decomposition shows molecule-plasma elastic collisions dominate molecule-plasma interactions, while molecular charge exchange cannot effectively reduce plasma momentum. In terms of H alpha emission, a strong rise of H alpha signal is found to be due to molecular excitation channels when the upstream density further increases after rollover.
- Published
- 2022
- Full Text
- View/download PDF
26. Boundary Plasma Physics : An Accessible Guide to Transport, Detachment, and Divertor Design
- Author
-
Fulvio Militello and Fulvio Militello
- Subjects
- Plasma confinement devices, Plasma confinement, Plasma (Ionized gases)
- Abstract
This book serves as an introduction to boundary plasma physics, providing an accessible entry point to the topic of plasma exhaust in magnetic confinement devices. While it delivers a concise, rigorous, and comprehensive account of all the major scientific topics relevant to those working on the subject, it also remains accessible and easy to consult due to its modular and compact structure. Beginning with the basic kinetic and fluid descriptions of plasma, and advancing through plasma-surface interactions, filamentary transport and plasma detachment, to conclude with a discussion of divertor configurations, this book represents a necessary and timely addition to the literature on the fast-growing field of boundary plasma physics. It will appeal to experienced theoreticians or experimentalists looking to enter the field as well as graduate students wishing to learn about it.
- Published
- 2022
27. Comparison of private flux region instability in conventional and super-X divertor configurations
- Author
-
D. Moulton, D. A. Baver, J.R. Myra, and Fulvio Militello
- Subjects
Physics ,Tokamak ,Turbulence ,Divertor ,Flux ,Mechanics ,Condensed Matter Physics ,Heat deposition ,Instability ,law.invention ,Physics::Plasma Physics ,law ,Eigenvalues and eigenvectors ,Geodesic curvature - Abstract
Understanding turbulence in the divertor leg of tokamaks is essential to predict the heat deposition profile on the divertor plate. This in turn is important for evaluating advanced divertor configurations, such as the super-X divertor. Within the divertor region, the private flux region is of interest because it is relatively unaffected by turbulence extending from the outboard midplane, so instabilities in this region could have a particularly pronounced effect on transport. These instabilities are modeled using the Arbitrary Topology Equation Reader (ArbiTER) eigenvalue code. Eigenmodes are examined further by comparing physics models to determine the fundamental mechanisms behind their formation and quantifying the effect of individual terms. This analysis is conducted on both conventional and super-X divertors to compare these effects. The resulting analysis reveals the presence of a geodesic curvature driven instability that is significantly more pronounced in the super-X configuration.
- Published
- 2021
- Full Text
- View/download PDF
28. Reduced-model scrape-off layer turbulence (nSOLT) simulations comparing three fueling scenarios
- Author
-
D. A. Russell, J.R. Myra, Fulvio Militello, and D. Moulton
- Subjects
Physics ,Heat flux ,Physics::Plasma Physics ,Turbulence ,Divertor ,Physics::Space Physics ,Flux ,Particle ,Plasma ,Mechanics ,Condensed Matter Physics ,Spectral line ,Vortex - Abstract
The 2D scrape-off-layer turbulence code (nSOLT) includes 1D Boltzmann neutral–plasma interactions, a model of divertor recycling (introduced here), and a fixed source of plasma concentrated at the core-side boundary. Three fueling methods are considered herein: (1) neutral injection in the far-SOL is accomplished by specifying the density of Franck–Condon distributed neutrals streaming in from the boundary. (2) Divertor recycling is modeled by injecting a fraction of the particle parallel flux in the scrape-off layer (SOL) back into the edge region as a source of plasma. (3) A constant source fuels the edge plasma from the core-side boundary to model pellet injection. For machine parameters (B, Rm, and L//) illustrative of the MAST-U device, and for a deuterium plasma, turbulent equilibria are obtained that share the same plasma fueling rate for each of the three fueling methods, with only one of the sources on in each case. In the presence of self-consistent turbulence, quasi-steady plasma and neutral (deuterium) profiles, fueling efficiencies, SOL transparencies, and heat flux widths are compared. Characteristics of the turbulent fluctuations, including skewness, cross-phases, and power spectra, are described. The calculated fueling efficiencies, SOL transparencies to neutral penetration, and many of the turbulent properties are remarkably similar for all three fueling methods despite significant differences in the plasma profiles. The nonlinear states of the three cases are dominated by separatrix-spanning vortex cells that control particle and heat losses into the SOL.
- Published
- 2021
- Full Text
- View/download PDF
29. Main chamber wall plasma loads in JET-ITER-like wall at high radiated fraction
- Author
-
C. Giroud, A.S. Kukushkin, R.A. Pitts, D. Harting, P. Carman, C. Guillemaut, S. Wiesen, P. Abreu, M. Wischmeier, P. Drewelow, C. F. Maggi, R. Coelho, Stéphane Devaux, Fulvio Militello, C.G. Lowry, E. R. Solano, C. Perez von Thun, Anna Widdowson, D. Wood, S. Brezinsek, Jet Contributors, J. Flanagan, G. F. Matthews, M. Brix, JET Contributors, Universidad de Sevilla. Departamento de Física Atómica, Molecular y Nuclear, and Universidad de Sevilla. RNM138: Física Nuclear Aplicada
- Subjects
Nuclear and High Energy Physics ,Tokamak ,Materials science ,Materials Science (miscellaneous) ,Analytical chemistry ,chemistry.chemical_element ,01 natural sciences ,7. Clean energy ,010305 fluids & plasmas ,law.invention ,Fusion, plasma och rymdfysik ,symbols.namesake ,Neon ,law ,Thermocouple ,0103 physical sciences ,Limiter ,Langmuir probe ,010306 general physics ,Divertor ,Mechanics ,Plasma ,Fusion, Plasma and Space Physics ,lcsh:TK9001-9401 ,Nuclear Energy and Engineering ,chemistry ,13. Climate action ,symbols ,ddc:333.7 ,lcsh:Nuclear engineering. Atomic power ,Beryllium - Abstract
Future tokamak reactors of conventional design will require high levels of exhaust power dissipation (more than 90% of the input power) if power densities at the divertor targets are to remain compatible with active cooling. Impurity seeded H-mode discharges in JET-ITER-like Wall (ILW) have reached a maximum radiative fraction (F-rad) of similar to 75%. Divertor Langmuir probe (LP) measurements in these discharges indicate, however, that less than similar to 3% of the thermal plasma power reaches the targets, suggesting a missing channel for power loss. This paper presents experimental evidence from limiter LP for enhanced cross-field particle fluxes on the main chamber walls at high F-rad. In H-mode nitrogen-seeded discharges with F-rad increasing from similar to 30% to up to similar to 75%, the main chamber wall particle fluence rises by a factor similar to 3 while the divertor plasma fluence drops by one order of magnitude. Contribution of main chamber wall particle losses to detachment, as suggested by EDGE2D-EIRENE modeling, is not sufficient to explain the magnitude of the observed divertor fluence reduction. An intermediate detached case obtained at F-rad similar to 60% with neon seeding is also presented. Heat loads were measured using the main chamber wall thermocouples. Comparison between thermocouple and bolometry measurements shows that the fraction of the input power transported to the main chamber wall remains below similar to 5%, whatever the divertor detachment state is. Main chamber sputtering of beryllium by deuterium is reduced in detached conditions only on the low field side. If the fraction of power exhaust dissipated to the main chamber wall by cross-field transport in future reactors is similar to the JET-ILW levels, wall plasma power loading should not be an issue. However, other contributions such as charge exchange may be a problem. For complete list of authors see http://dx.doi.org/10.1016/j.nme.2017.02.010
- Published
- 2017
- Full Text
- View/download PDF
30. Dynamics of scrape-off layer filaments in detached conditions
- Author
-
H. J. Leggate, Miles M. Turner, Fulvio Militello, Nick Walkden, Benjamin Daniel Dudson, and D. Schworer
- Subjects
Nuclear and High Energy Physics ,Work (thermodynamics) ,Materials science ,Dynamics (mechanics) ,FOS: Physical sciences ,Plasma ,Mechanics ,macromolecular substances ,Condensed Matter Physics ,01 natural sciences ,Physics - Plasma Physics ,010305 fluids & plasmas ,Plasma Physics (physics.plasm-ph) ,Radial velocity ,Protein filament ,0103 physical sciences ,010306 general physics ,Layer (electronics) - Abstract
The here presented work studies the dynamics of filaments using 3D fluid simulations in the presence of detached background profiles. It was found that evolving the neutrals on the time-scale of the filament did not have a significant impact on the dynamics of the filament. In general a decreasing filament velocity with increasing plasma background density has been observed, with the exception of detachment onset, where a temporarily increase in radial velocity occurs. The decreasing trend with temporary increase was found for filaments around the critical size and larger, while smaller filaments where less affected by detachment. With detachment the critical filament size increased, as larger filaments were faster in detached conditions. This breaks the trend of attached conditions, where the critical size decreases with increasing density.
- Published
- 2019
31. A Bayesian model of filamentary dynamics in MAST
- Author
-
Fulvio Militello, L. Appel, Sehyun Kwak, and J. Svensson
- Subjects
Physics ,Mast (sailing) ,Nuclear Energy and Engineering ,Statistical physics ,Condensed Matter Physics ,Bayesian inference - Abstract
A novel approach using Bayesian inference has been implemented to interpret the filamentary dynamics measured by a Langmuir probe fixed to a reciprocating assembly on MAST. The model describes the system as a superposition of time-displaced filaments and a fixed background component. Each filament is parameterised in terms of a characteristic rise and fall time and maximum amplitude centred on local maxima in the measured data time-series. A distinctive feature of the approach is that no minimum threshold is set for the existence of filaments. It is observed that whereas large amplitude filaments are well characterised in terms of rise times, smaller amplitude filaments are often unconstrained by the data and are limited by the details of the prior. Based on these findings, a new definition for the plasma filaments is proposed based on the uncertainty in the filament rise times. The remaining filaments together with the constant background component forms a new time-dependent signal referred to as the computed background fluctuation signal. The characteristics of these signals (for the plasma filaments and for the background fluctuations) are reported in terms of their spatial variation as the probe moves through the SOL and into the core plasma.
- Published
- 2020
- Full Text
- View/download PDF
32. Onset of interchange instability in a coupled core–SOL plasma
- Author
-
Fulvio Militello, Fryderyk Wilczynski, David W. Hughes, and Wayne Arter
- Subjects
Physics ,Fusion ,Field line ,Plasma ,Condensed Matter Physics ,Thermal diffusivity ,01 natural sciences ,Molecular physics ,010305 fluids & plasmas ,Ion ,Core (optical fiber) ,Viscosity ,Physics::Plasma Physics ,0103 physical sciences ,Particle ,010306 general physics - Abstract
The dynamics at the edge of fusion confinement devices is driven by interchange instabilities and involves the motion of plasma across two regions—the “core region” and the scrape-off layer (SOL)—distinguished by whether field lines are, respectively, closed or connected to the wall. Motivated by this phenomenon, we present an extensive linear stability analysis of a two-layer plasma model encompassing the coupled interactions between the region with closed field lines and the SOL. We focus on the effect of varying the particle diffusivity and ion viscosity, revealing the significant variation in the spatial structure of the critical modes. In addition, we have investigated the dependence of the stability threshold on the ratio of the width of the region with closed field lines to that of the SOL; this dependence is strong when the ratio is sufficiently small, but becomes insignificant once the ratio is of order unity.
- Published
- 2020
- Full Text
- View/download PDF
33. Physics research on the TCV tokamak facility: From conventional to alternative scenarios and beyond
- Author
-
G. Tomaž, M. Weiland, J. Gath, Antti Hakola, Kevin Verhaegh, A.J. Thornton, Matthew Carr, J. Juul Rasmussen, S. Costea, Jorge Morales, A. Perek, X. Feng, F. Pesamosca, Marcelo Baquero-Ruiz, N. Vianello, A. Dal Molin, N. M. T. Vu, D. Hogeweij, G. Calabrò, Tom Wauters, Christian Hopf, E. Alessi, Aitor J. Garrido, Justin Ball, Daniele Carnevale, A. Czarnecka, S. Garavaglia, G. Ferro, George Wilkie, N. Krawczyk, M. Nocente, H. De Oliveira, Ivo Furno, W. Bin, O. Chellai, Stefano Coda, Fulvio Auriemma, Yann Camenen, W. A. J. Vijvers, Christian Theiler, A. N. Karpushov, M. Faitsch, Jérôme Bucalossi, Paolo Ricci, Antoine Merle, T. C. Blanken, Cristian Galperti, Duccio Testa, Ambrogio Fasoli, Y. Andrebe, F. Bagnato, S. Nowak, J. R. Harrison, O. Vasilovici, M. E. Puiatti, Stefan Kragh Nielsen, J. S. Allcock, L. Calacci, Matteo Zuin, V. Piergotti, P. Chmielewski, P. Molina Cabrera, Taina Kurki-Suonio, D. Micheletti, Emanuele Poli, Nuno Cruz, M. Farnik, Jonathan Graves, Alessandro Pau, Olivier Février, N. A. Kirneva, Bruce Lipschultz, E. Lazzaro, E. Havlickova, G. Giruzzi, Jens Madsen, L. Stipani, D. Brida, Ch. Schlatter, M. Wensing, R. O. Pavlichenko, F. Nespoli, J. Decker, Eva Macusova, Fulvio Militello, Nicola Offeddu, Heinz Isliker, A. Zisis, A. Marco, Laurie Porte, Marco Gobbin, Anna Salmi, S. Vartanian, J. Sinha, Matthias Komm, M. Spolaore, Anders Nielsen, T. Happel, R. D. Nem, A. Iantchenko, V.V. Plyusnin, C. Tsironis, V. Igochine, R. M. McDermott, Pär Strand, Benjamin Daniel Dudson, T. Ravensbergen, V. P. Loschiavo, H. Arnichand, E. Viezzer, Fabio Villone, Carlo Sozzi, Z. Huang, V. Pericoli Ridolfini, B. Linehan, L. Hesslow, P. Buratti, A. Casolari, M. Bernert, P. Mantica, H. Weisen, J-M Moret, Maiko Yoshida, N. Bonanomi, S. Feng, A. A. Teplukhina, Jakub Urban, F. Carpanese, C. Piron, S. Allan, Minh Quang Tran, C. Marini, Artur Palha, F.P. Orsitto, Roberto Ambrosino, A. S. Tema Biwole, Harry M. Meyer, Davide Galassi, J. Mlynář, N. Christen, M. Wischmeier, Mathias Hoppe, P. David, J. Horacek, M. Maraschek, G. Ciraolo, R. R. Sheeba, J. Zebrowski, M. Dreval, M. Silva, K. Gałązka, Olivier Sauter, Laure Vermare, A. Gallo, C. Reux, M. Gospodarczyk, O. Bogar, Roman Schrittwieser, C. Marchetto, Patrick J. McCarthy, Joël Rosato, G. Pucella, K. Wu, Volker Naulin, Bojan Mavkov, S. Elmore, Lorella Carraro, Gustavo Granucci, Christopher N. Bowman, O. Kudlacek, M. Gruca, A. Jardin, Federico Felici, Didier Mazon, D. C. van Vugt, D. Douai, Jose Boedo, Raffaele Albanese, U. A. Sheikh, Hugo Bufferand, R. Lombroni, T. Pütterich, Benedikt Geiger, X. Llobet, Izaskun Garrido, J.-Ph. Hogge, J. Ayllon-Guerola, Nicolas Fedorczak, Timothy Goodman, A. Mariani, E. Maljaars, Matteo Agostini, Lorenzo Frassinetti, S. E. Sharapov, C.K. Tsui, Vladimir E. Moiseenko, Robert Mumgaard, Amanda Hubbard, L. Pigatto, F. Matos, D. S. Gahle, Roberto Maurizio, I. Voitsekhovitch, Paolo Zanca, J. Buermans, A. Fil, T. Lunt, S. S. Henderson, D. Ricci, M. Kong, Ondrej Ficker, Matthias Wiesenberger, L. Cordaro, P. Innocente, Roberto Paccagnella, Benoit Labit, N. Rispoli, M. Rabinski, G. F. Harrer, Roch Kwiatkowski, A. Moro, A. A. Beletskii, M. Vallar, M. Reich, F. Reimold, P. Piovesan, Mirko Salewski, J. Hawke, Giuseppe Gorini, J. Čeřovský, F. Causa, H. Reimerdes, B. Esposito, Jernej Kovacic, P. V. Kazantzidis, H. Anand, Gergely Papp, M. Valisa, K. Mitosinkova, Vlado Menkovski, F. Bombarda, M. Fontana, Tommaso Bolzonella, Pascale Hennequin, T. Gyergyek, D. L. Keeling, T. Eich, M. Garcia-Munoz, Stefano Alberti, P. Blanchard, F. Bouquey, R. Shousha, M. Scheffer, B. S. Schneider, R. Jacquier, D. Choi, Nick Walkden, Ola Embréus, C. Ionita Schrittwieser, S. Saarelma, J. Garcia, M. G. Dunne, M. Tomes, R. Zagórski, Y. R. Martin, A. Kappatou, B. P. Duval, T. Tala, Swiss National Science Foundation, Universita degli studi di Napoli 'Parthenope' [Napoli], Max-Planck-Institut für Plasmaphysik [Garching] (IPP), Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Istituto di Fisica del Plasma, EURATOM-ENEA-CNR Association, Consiglio Nazionale delle Ricerche [Roma] (CNR), Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), Department of Physics [Stockholm], Stockholm University, Laboratoire de Physique des Plasmas (LPP), Université Paris-Sud - Paris 11 (UP11)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), EURATOM/CCFE Fusion Association, Culham Science Centre [Abingdon], York Plasma Institute (YPI), University of York [York, UK], Faculty of Mathematics and Physics [Praha/Prague], Charles University [Prague] (CU), Association EURATOM-CEA (CEA/DSM/DRFC), University College Cork (UCC), Department of Mechanical and Manufacturing Engineering [Aalborg] (M-TECH), Aalborg University [Denmark] (AAU), Università degli Studi di Milano-Bicocca [Milano] (UNIMIB), Instituto de Plasmas e Fusão Nuclear [Lisboa] (IPFN), Instituto Superior Técnico, Universidade Técnica de Lisboa (IST), Université Paris-Saclay-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École polytechnique (X)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Coda, S, Agostini, M, Albanese, R, Alberti, S, Alessi, E, Allan, S, Allcock, J, Ambrosino, R, Anand, H, Andrebe, Y, Arnichand, H, Auriemma, F, Ayllon-Guerola, J, Bagnato, F, Ball, J, Baquero-Ruiz, M, Beletskii, A, Bernert, M, Bin, W, Blanchard, P, Blanken, T, Boedo, J, Bogar, O, Bolzonella, T, Bombarda, F, Bonanomi, N, Bouquey, F, Bowman, C, Brida, D, Bucalossi, J, Buermans, J, Bufferand, H, Buratti, P, Calabro, G, Calacci, L, Camenen, Y, Carnevale, D, Carpanese, F, Carr, M, Carraro, L, Casolari, A, Causa, F, Cerovsky, J, Chellai, O, Chmielewski, P, Choi, D, Christen, N, Ciraolo, G, Cordaro, L, Costea, S, Cruz, N, Czarnecka, A, Dal Molin, A, David, P, Decker, J, De Oliveira, H, Douai, D, Dreval, M, Dudson, B, Dunne, M, Duval, B, Eich, T, Elmore, S, Embreus, O, Esposito, B, Faitsch, M, Farnik, M, Fasoli, A, Fedorczak, N, Felici, F, Feng, S, Feng, X, Ferro, G, Fevrier, O, Ficker, O, Fil, A, Fontana, M, Frassinetti, L, Furno, I, Gahle, D, Galassi, D, Galazka, K, Gallo, A, Galperti, C, Garavaglia, S, Garcia, J, Garcia-Munoz, M, Garrido, A, Garrido, I, Gath, J, Geiger, B, Giruzzi, G, Gobbin, M, Goodman, T, Gorini, G, Gospodarczyk, M, Granucci, G, Graves, J, Gruca, M, Gyergyek, T, Hakola, A, Happel, T, Harrer, G, Harrison, J, Havlickova, E, Hawke, J, Henderson, S, Hennequin, P, Hesslow, L, Hogeweij, D, Hogge, J, Hopf, C, Hoppe, M, Horacek, J, Huang, Z, Hubbard, A, Iantchenko, A, Igochine, V, Innocente, P, Ionita Schrittwieser, C, Isliker, H, Jacquier, R, Jardin, A, Kappatou, A, Karpushov, A, Kazantzidis, P, Keeling, D, Kirneva, N, Komm, M, Kong, M, Kovacic, J, Krawczyk, N, Kudlacek, O, Kurki-Suonio, T, Kwiatkowski, R, Labit, B, Lazzaro, E, Linehan, B, Lipschultz, B, Llobet, X, Lombroni, R, Loschiavo, V, Lunt, T, Macusova, E, Madsen, J, Maljaars, E, Mantica, P, Maraschek, M, Marchetto, C, Marco, A, Mariani, A, Marini, C, Martin, Y, Matos, F, Frisina, M, Mavkov, B, Mazon, D, Mccarthy, P, Mcdermott, R, Menkovski, V, Merle, A, Meyer, H, Micheletti, D, Militello, F, Mitosinkova, K, Mlynar, J, Moiseenko, V, Molina Cabrera, P, Morales, J, Moret, J, Moro, A, Mumgaard, R, Naulin, V, Nem, R, Nespoli, F, Nielsen, A, Nielsen, S, Nocente, M, Nowak, S, Offeddu, N, Orsitto, F, Paccagnella, R, Palha, A, Papp, G, Pau, A, Pavlichenko, R, Perek, A, Pericoli Ridolfini, V, Pesamosca, F, Piergotti, V, Pigatto, L, Piovesan, P, Piron, C, Plyusnin, V, Poli, E, Porte, L, Pucella, G, Puiatti, M, Putterich, T, Rabinski, M, Juul Rasmussen, J, Ravensbergen, T, Reich, M, Reimerdes, H, Reimold, F, Reux, C, Ricci, D, Ricci, P, Rispoli, N, Rosato, J, Saarelma, S, Salewski, M, Salmi, A, Sauter, O, Scheffer, M, Schlatter, C, Schneider, B, Schrittwieser, R, Sharapov, S, Sheeba, R, Sheikh, U, Shousha, R, Silva, M, Sinha, J, Sozzi, C, Spolaore, M, Stipani, L, Strand, P, Tala, T, Tema Biwole, A, Teplukhina, A, Testa, D, Theiler, C, Thornton, A, Tomaz, G, Tomes, M, Tran, M, Tsironis, C, Tsui, C, Urban, J, Valisa, M, Vallar, M, Van Vugt, D, Vartanian, S, Vasilovici, O, Verhaegh, K, Vermare, L, Vianello, N, Viezzer, E, Vijvers, W, Villone, F, Voitsekhovitch, I, Vu, N, Walkden, N, Wauters, T, Weiland, M, Weisen, H, Wensing, M, Wiesenberger, M, Wilkie, G, Wischmeier, M, Wu, K, Yoshida, M, Zagorski, R, Zanca, P, Zebrowski, J, Zisis, A, Zuin, M, Università degli Studi di Napoli 'Parthenope' = University of Naples (PARTHENOPE), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Milano-Bicocca = University of Milano-Bicocca (UNIMIB), Université Paris-Sud - Paris 11 (UP11)-Observatoire de Paris, Coda, S., Agostini, M., Albanese, R., Alberti, S., Alessi, E., Allan, S., Allcock, J., Ambrosino, R., Anand, H., Andrebe, Y., Arnichand, H., Auriemma, F., Ayllon-Guerola, J. M., Bagnato, F., Ball, J., Baquero-Ruiz, M., Beletskii, A. A., Bernert, M., Bin, W., Blanchard, P., Blanken, T. C., Boedo, J. A., Bogar, O., Bolzonella, T., Bombarda, F., Bonanomi, N., Bouquey, F., Bowman, C., Brida, D., Bucalossi, J., Buermans, J., Bufferand, H., Buratti, P., Calabro, G., Calacci, L., Camenen, Y., Carnevale, D., Carpanese, F., Carr, M., Carraro, L., Casolari, A., Causa, F., Cerovsky, J., Chellai, O., Chmielewski, P., Choi, D., Christen, N., Ciraolo, G., Cordaro, L., Costea, S., Cruz, N., Czarnecka, A., Dal Molin, A., David, P., Decker, J., De Oliveira, H., Douai, D., Dreval, M. B., Dudson, B., Dunne, M., Duval, B. P., Eich, T., Elmore, S., Embreus, O., Esposito, B., Faitsch, M., Farnik, M., Fasoli, A., Fedorczak, N., Felici, F., Feng, S., Feng, X., Ferro, G., Fevrier, O., Ficker, O., Fil, A., Fontana, M., Frassinetti, L., Furno, I., Gahle, D. S., Galassi, D., Galazka, K., Gallo, A., Galperti, C., Garavaglia, S., Garcia, J., Garcia-Munoz, M., Garrido, A. J., Garrido, I., Gath, J., Geiger, B., Giruzzi, G., Gobbin, M., Goodman, T. P., Gorini, G., Gospodarczyk, M., Granucci, G., Graves, J. P., Gruca, M., Gyergyek, T., Hakola, A., Happel, T., Harrer, G. F., Harrison, J., Havlickova, E., Hawke, J., Henderson, S., Hennequin, P., Hesslow, L., Hogeweij, D., Hogge, J. -P., Hopf, C., Hoppe, M., Horacek, J., Huang, Z., Hubbard, A., Iantchenko, A., Igochine, V., Innocente, P., Ionita Schrittwieser, C., Isliker, H., Jacquier, R., Jardin, A., Kappatou, A., Karpushov, A., Kazantzidis, P. -V., Keeling, D., Kirneva, N., Komm, M., Kong, M., Kovacic, J., Krawczyk, N., Kudlacek, O., Kurki-Suonio, T., Kwiatkowski, R., Labit, B., Lazzaro, E., Linehan, B., Lipschultz, B., Llobet, X., Lombroni, R., Loschiavo, V. P., Lunt, T., Macusova, E., Madsen, J., Maljaars, E., Mantica, P., Maraschek, M., Marchetto, C., Marco, A., Mariani, A., Marini, C., Martin, Y., Matos, F., Maurizio, R., Mavkov, B., Mazon, D., Mccarthy, P., Mcdermott, R., Menkovski, V., Merle, A., Meyer, H., Micheletti, D., Militello, F., Mitosinkova, K., Mlynar, J., Moiseenko, V., Molina Cabrera, P. A., Morales, J., Moret, J. -M., Moro, A., Mumgaard, R. T., Naulin, V., Nem, R. D., Nespoli, F., Nielsen, A. H., Nielsen, S. K., Nocente, M., Nowak, S., Offeddu, N., Orsitto, F. P., Paccagnella, R., Palha, A., Papp, G., Pau, A., Pavlichenko, R. O., Perek, A., Pericoli Ridolfini, V., Pesamosca, F., Piergotti, V., Pigatto, L., Piovesan, P., Piron, C., Plyusnin, V., Poli, E., Porte, L., Pucella, G., Puiatti, M. E., Putterich, T., Rabinski, M., Juul Rasmussen, J., Ravensbergen, T., Reich, M., Reimerdes, H., Reimold, F., Reux, C., Ricci, D., Ricci, P., Rispoli, N., Rosato, J., Saarelma, S., Salewski, M., Salmi, A., Sauter, O., Scheffer, M., Schlatter, C., Schneider, B. S., Schrittwieser, R., Sharapov, S., Sheeba, R. R., Sheikh, U., Shousha, R., Silva, M., Sinha, J., Sozzi, C., Spolaore, M., Stipani, L., Strand, P., Tala, T., Tema Biwole, A. S., Teplukhina, A. A., Testa, D., Theiler, C., Thornton, A., Tomaz, G., Tomes, M., Tran, M. Q., Tsironis, C., Tsui, C. K., Urban, J., Valisa, M., Vallar, M., Van Vugt, D., Vartanian, S., Vasilovici, O., Verhaegh, K., Vermare, L., Vianello, N., Viezzer, E., Vijvers, W. A. J., Villone, F., Voitsekhovitch, I., Vu, N. M. T., Walkden, N., Wauters, T., Weiland, M., Weisen, H., Wensing, M., Wiesenberger, M., Wilkie, G., Wischmeier, M., Wu, K., Yoshida, M., Zagorski, R., Zanca, P., Zebrowski, J., Zisis, A., Zuin, M., Coda, S. et al, Universidad de Sevilla. Departamento de Física Atómica, Molecular y Nuclear., Universidad de Sevilla, Departamento de Ingeniería Mecánica y Fabricación, Universidad de Sevilla. TEP111: Ingeniería Mecánica, Universidad de Sevilla. RNM138: Física Nuclear Aplicada, EUROfusion MST1 Team, Control Systems Technology, Data Mining, Science and Technology of Nuclear Fusion, and Magneto-Hydro-Dynamic Stability of Fusion Plasmas
- Subjects
Nuclear and High Energy Physics ,Tokamak ,Settore ING-INF/04 ,TK ,UPGRADE ,Cyclotron ,Overview ,Cyclotron resonance ,overview ,CONFINEMENT ,DETACHMENT ,7. Clean energy ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,law ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,CONTROL-SYSTEM ,0103 physical sciences ,EUROfusion ,010306 general physics ,tokamak ,QC ,plasma ,nuclear fusion ,Physics ,PLASMA ,Divertor ,Magnetic confinement fusion ,Plasma ,Mechanics ,TCV, MST1 ,Condensed Matter Physics ,Neutral beam injection ,Physics and Astronomy ,13. Climate action ,confinement ,detachment ,Nuclear fusion ,control-system ,upgrade ,TCV ,MST1 ,Beam (structure) ,Tokamaks - Abstract
The research program of the TCV tokamak ranges from conventional to advanced-tokamak scenarios and alternative divertor configurations, to exploratory plasmas driven by theoretical insight, exploiting the device's unique shaping capabilities. Disruption avoidance by real-time locked mode prevention or unlocking with electron-cyclotron resonance heating (ECRH) was thoroughly documented, using magnetic and radiation triggers. Runaway generation with high-Z noble-gas injection and runaway dissipation by subsequent Ne or Ar injection were studied for model validation. The new 1 MW neutral beam injector has expanded the parameter range, now encompassing ELMy H-modes in an ITER-like shape and nearly non-inductive H-mode discharges sustained by electron cyclotron and neutral beam current drive. In the H-mode, the pedestal pressure increases modestly with nitrogen seeding while fueling moves the density pedestal outwards, but the plasma stored energy is largely uncorrelated to either seeding or fueling. High fueling at high triangularity is key to accessing the attractive small edge-localized mode (type-II) regime. Turbulence is reduced in the core at negative triangularity, consistent with increased confinement and in accord with global gyrokinetic simulations. The geodesic acoustic mode, possibly coupled with avalanche events, has been linked with particle flow to the wall in diverted plasmas. Detachment, scrape-off layer transport, and turbulence were studied in L- and H-modes in both standard and alternative configurations (snowflake, super-X, and beyond). The detachment process is caused by power 'starvation' reducing the ionization source, with volume recombination playing only a minor role. Partial detachment in the H-mode is obtained with impurity seeding and has shown little dependence on flux expansion in standard single-null geometry. In the attached L-mode phase, increasing the outer connection length reduces the in-out heat-flow asymmetry. A doublet plasma, featuring an internal X-point, was achieved successfully, and a transport barrier was observed in the mantle just outside the internal separatrix. In the near future variable-configuration baffles and possibly divertor pumping will be introduced to investigate the effect of divertor closure on exhaust and performance, and 3.5 MW ECRH and 1 MW neutral beam injection heating will be added., This work was supported in part by the Swiss National Science Foundation.
- Published
- 2019
- Full Text
- View/download PDF
34. Filament identification in wide-angle high speed imaging of the mega amp spherical tokamak
- Author
-
T Farley, S S Henderson, James W. Bradley, S S Silburn, A. Kirk, J Young, Nick Walkden, I Lupelli, L Kogan, Fulvio Militello, James Harrison, and M Sanna
- Subjects
010302 applied physics ,Physics ,Pixel ,Field line ,business.industry ,Coordinate system ,Field of view ,Spherical tokamak ,01 natural sciences ,010305 fluids & plasmas ,Magnetic field ,Superposition principle ,Amplitude ,Optics ,0103 physical sciences ,business ,Instrumentation - Abstract
A new tomographic inversion technique is presented for the identification of plasma filaments in wide-angle visible camera data. The technique works on the assumption that background subtracted images of filaments can be represented as a superposition of uniformly emitting magnetic equilibrium field lines. A large collection of equilibrium magnetic field lines is traced and projected onto the camera field of view and combined to form a geometry matrix describing the coordinate transformation from magnetic field aligned coordinates to image pixel coordinates. Inverting this matrix enables the reprojection of the emission in the camera images onto a field aligned basis, from which filaments are readily identifiable. The inversion is a poorly conditioned problem which is overcome using a least-squares approach with Laplacian regularization. Blobs are identified using the "watershed" algorithm and 2D Gaussians are fitted to get the positions, widths, and amplitudes of the filaments. A synthetic camera diagnostic generating images containing experimentally representative filaments is utilized to rigorously benchmark the accuracy and reliability of the technique. 74% of synthetic filaments above the detection amplitude threshold are successfully detected, with 98.8% of detected filaments being true positives. The accuracy with which filament properties and their probability density functions are recovered is discussed, along with sources of error and methods to minimize them.
- Published
- 2019
- Full Text
- View/download PDF
35. Influence of plasma background on 3D scrape-off layer filaments
- Author
-
Turlough P. Downes, Fulvio Militello, H. J. Leggate, Nick Walkden, Ben Dudson, D. Schworer, and Miles M. Turner
- Subjects
Electron density ,Materials science ,Dynamics (mechanics) ,FOS: Physical sciences ,Plasma ,macromolecular substances ,Condensed Matter Physics ,01 natural sciences ,Molecular physics ,Physics - Plasma Physics ,010305 fluids & plasmas ,Protein filament ,Plasma Physics (physics.plasm-ph) ,Quantitative Biology::Subcellular Processes ,Density dependence ,Nuclear Energy and Engineering ,Physics::Plasma Physics ,0103 physical sciences ,Physics::Space Physics ,Filament propagation ,Electron temperature ,010306 general physics ,Layer (electronics) - Abstract
This paper presents the effect of self-consistent plasma backgrounds including plasma-neutral interactions, on the dynamics of filament propagation. The principle focus is on the influence of the neutrals on the filament through both direct interactions and through their influence on the plasma background. Both direct and indirect interactions influence the motion of filaments. A monotonic increase of filament peak velocity with upstream electron temperature is observed, while a decrease with increasing electron density is observed. If ordered by the target temperature, the density dependence disappears and the filament velocity is only a function of the target temperature. Smaller filaments keep a density dependence, as a result of the density dependence of the plasma viscosity. The critical size $\delta^*$, where filaments are fastest, is shifted to larger sizes for higher densities, due to the plasma viscosity. If the density dependence of the plasma viscosity is removed, $\delta^*$ has no temperature dependence, but rather a density dependence.
- Published
- 2018
36. SOL Transport and Filamentary Dynamics in High Density Tokamak Regimes
- Author
-
Antti Hakola, Nicola Vianello, Daniel Carralero, Cedric Tsui, Volker Naulin, Matteo Agostini, Boedo, J., Benoit Labit, Christian Theiler, Diego Aguiam, Scott Allan, Matthias Bernert, Stefan Costea, Istvan Cziegler, Hugo de Oliveira, Joaquin Galdon-Quiroga, Gustavo Grenfell, Codrina Ionita, Heinz Isliker, Alexander Karpushov, Jernej Kovacic, Bruce Lipschultz, Roberto Maurizio, Ken McClements, Fulvio Militello, Jeppe Olsen, Jens Juul Rasmussen, Timo Ravensbergen, Holger Reimerdes, Bernd Schneider, Roman Schrittwieser, Monica Spolaore, Kevin Verhaegh, Jose Vicente, Nick Walkden, Wei Zhang, Elisabeth Wolfrum, ASDEX Upgrade Team, Max Planck Institute for Plasma Physics, Max Planck Society, TCV Team, and EUROfusion MST1 Team
- Abstract
Addressing the role of scrape off layer filamentary transport is a subject of intense studies in fusion science. Intermittent structures dominate transport in L-Mode and strongly contribute to particle and energy losses in H-mode. The role of convective radial losses has become even more important due to its contribution to the shoulder formation in L-Mode, describing the progressive flattening of the density scrape off layer profile at high density [1]. Investigation of this process revealed the strong relationship between divertor conditionsand the upstream profiles, mediated by filaments dynamics which varies according to the downstream conditions. Preliminary investigations suggested that similar mechanisms occur in H-Mode [1] and that filaments contribute the SOL transport in H-mode density limit (HDL) as well [4]. The present contribution will report on results obtained on ASDEX-Upgrade and TCV tokamaks, to address the role of filamentary transport in high density regimes both in L- and H-Mode. The combined results enlarge the operational space, from a device with a closed divertor, metallic first wall and cryogenic pumping system to a carbon machine with a completely open divertor. The mechanism of shoulder formationand the role of filaments have been tested against variation of plasma current, magnetic configuration (single and double null plasmas), and divertor neutral densities, through modification of cryopump efficiency. At constant magnetic field the density decay length increases with filament-size independently of the plasma current for both machines in L-mode, consistently with the fact that upstream profiles and divertor neutral pressure exhibit the same trend with normalized Greenwald fraction.In H-Mode fuelling is insufficient to cause flattening of SOL profiles in the inter-ELM phases since large neutral pressure is needed. Consistently inter-ELM blob size in AUG are found larger whenever the cryopumps is switched off. The resulting picture suggests a complex relationship between divertor and upstream profiles, where filaments are modified by divertor conditions as well as by neutral particles interaction.
- Published
- 2018
37. Intrinsic instabilities in X-point geometry: A tool to understand and predict the Scrape Off Layer transport in standard and advanced divertors
- Author
-
Y. Liu and Fulvio Militello
- Subjects
Nuclear and High Energy Physics ,Gyroradius ,Separatrix ,Chemistry ,Divertor ,Analytical chemistry ,Plasma ,Mechanics ,Curvature ,01 natural sciences ,010305 fluids & plasmas ,Nuclear Energy and Engineering ,Physics::Plasma Physics ,0103 physical sciences ,General Materials Science ,Boundary value problem ,Snowflake ,010306 general physics ,Linear growth - Abstract
Intrinsic Scrape Off Layer (SOL) instabilities are studied using flute approximation and incorporating the appropriate sheath boundary conditions at the target. The linear growth rate and the structure of the modes are obtained. The associated diffusion is estimated using a γ / k ⊥ 2 approach for the fastest growing modes. The model used includes curvature and sheath drives, finite Larmor radius effects and partial line tying at the target. The magnetic geometry is obtained using current carrying wires, representing the plasma current and the divertor coils, and naturally generates X-point geometry and magnetic shear effects. The calculation is performed for ITER relevant parameters and scans in SOL width and distance from the separatrix are presented. In addition to a standard Lower Single Null, Super-X and Snowflake configurations are examined in order to assess the importance of the geometry on the stability of the boundary plasma.
- Published
- 2015
- Full Text
- View/download PDF
38. Solution to a collisionless shallow-angle magnetic presheath with kinetic ions
- Author
-
Fulvio Militello, Alessandro Geraldini, and Felix I. Parra
- Subjects
Physics ,Debye sheath ,Mean free path ,Gyroradius ,FOS: Physical sciences ,Electron ,Condensed Matter Physics ,Kinetic energy ,01 natural sciences ,Physics - Plasma Physics ,010305 fluids & plasmas ,Ion ,Magnetic field ,Plasma Physics (physics.plasm-ph) ,symbols.namesake ,Nuclear Energy and Engineering ,Physics::Plasma Physics ,0103 physical sciences ,symbols ,Atomic physics ,010306 general physics ,Debye length - Abstract
Using a kinetic model for the ions and adiabatic electrons, we solve a steady state, electron-repelling magnetic presheath in which a uniform magnetic field makes a small angle $\alpha \ll 1$ (in radians) with the wall. The presheath characteristic thickness is the typical ion gyroradius $\rho_{\text{i}}$. The Debye length $\lambda_{\text{D}}$ and the collisional mean free path of an ion $\lambda_{\text{mfp}}$ satisfy the ordering $\lambda_{\text{D}} \ll \rho_{\text{i}} \ll \alpha \lambda_{\text{mfp}}$, so a quasineutral and collisionless model is used. We assume that the electrostatic potential is a function only of distance from the wall, and it varies over the scale $\rho_{\text{i}}$. Using the expansion in $\alpha \ll 1$, we derive an analytical expression for the ion density that only depends on the ion distribution function at the entrance of the magnetic presheath and the electrostatic potential profile. Importantly, we have added the crucial contribution of the orbits in the region near the wall. By imposing the quasineutrality equation, we derive a condition that the ion distribution function must satisfy at the magnetic presheath entrance --- the kinetic equivalent of the Chodura condition. Using an ion distribution function at the entrance of the magnetic presheath that satisfies the kinetic Chodura condition, we find numerical solutions for the self-consistent electrostatic potential, ion density and flow across the magnetic presheath for several values of $\alpha$. Our numerical results also include the distribution of ion velocities at the Debye sheath entrance. We find that at small values of $\alpha$ there are substantially fewer ions travelling with a large normal component of the velocity into the wall., Comment: 69 pages, 20 figures
- Published
- 2018
- Full Text
- View/download PDF
39. Influence of plasma background including neutrals on scrape-off layer filaments using 3D simulations
- Author
-
D. Schworer, Turlough P. Downes, Nick Walkden, H. J. Leggate, Fulvio Militello, Miles M. Turner, and Benjamin Daniel Dudson
- Subjects
Nuclear and High Energy Physics ,Fusion ,Chemistry ,Materials Science (miscellaneous) ,Plasma ,macromolecular substances ,01 natural sciences ,lcsh:TK9001-9401 ,010305 fluids & plasmas ,Quantitative Biology::Cell Behavior ,Protein filament ,Quantitative Biology::Subcellular Processes ,Nuclear Energy and Engineering ,0103 physical sciences ,lcsh:Nuclear engineering. Atomic power ,Atomic physics ,010306 general physics ,Neutral density filter ,Layer (electronics) - Abstract
This paper investigates the effect of the plasma background, including neutrals in a self-consistent way, on filaments in the scrape-off layer (SOL) of fusion devices. A strong dependency of filament motion on background density and temperature is observed. The radial filament motion shows an increase in velocity with decreasing background density and increasing background temperature. In the simulations presented here, three neutral-filament interaction models have been compared, one with a static neutral background, one with no interaction between filaments and neutrals, and one co-evolving the neutrals self consistently with the filaments. With the background conditions employed here, which do not show detachment, there are no significant effects of neutrals on filaments, as by the time the filament reaches maximum velocity, the neutral density has not changed significantly.
- Published
- 2017
- Full Text
- View/download PDF
40. Dynamics of scrape-off layer filaments in high β plasmas
- Author
-
S Newton, D Ryan, Thomas Nicholas, D Hoare, J.T. Omotani, Fabio Riva, Fulvio Militello, and Nick Walkden
- Subjects
Materials science ,Nuclear Energy and Engineering ,Dynamics (mechanics) ,Plasma ,Condensed Matter Physics ,Molecular physics ,Layer (electronics) - Published
- 2019
- Full Text
- View/download PDF
41. Identification of intermittent transport in the scrape-off layer of MAST through high speed imaging
- Author
-
J. R. Harrison, J. Young, S. A. Silburn, Fulvio Militello, Nick Walkden, and T. Farley
- Subjects
Physics ,Nuclear and High Energy Physics ,Separatrix ,Materials Science (miscellaneous) ,Divertor ,Plasma ,Spherical tokamak ,lcsh:TK9001-9401 ,01 natural sciences ,010305 fluids & plasmas ,Sharp rise ,Protein filament ,Nuclear Energy and Engineering ,0103 physical sciences ,lcsh:Nuclear engineering. Atomic power ,Atomic physics ,010306 general physics - Abstract
Using footage from high speed movies taken of the boundary plasma in the Mega Amp Spherical Tokamak (MAST) general properties of filaments are inferred through statistical moments. Filaments are observed up to and beyond the ψ N = 1.5 flux surface which, in single null configurations, lies well beyond the secondary separatrix and leads to filaments observed > 30 cm from the top of the plasma. In the divertor filaments are observed to connect through to the target, however a quiescent region is observed close to the X-point where no coherent filaments are identified. This region coincides with a sharp rise in the integrated magnetic shear which may change the nature of the filament cross-section.
- Published
- 2017
- Full Text
- View/download PDF
42. Interpretation of scrape-off layer profile evolution and first-wall ion flux statistics on JET using a stochastic framework based on filamentary motion
- Author
-
C. Guillemaut, David Moulton, G. F. Matthews, Bruce Lipschultz, A. Wynn, Nick Walkden, Jet Contributors, Fulvio Militello, and J. R. Harrison
- Subjects
Physics ,geography ,geography.geographical_feature_category ,Stochastic modelling ,Autocorrelation ,FOS: Physical sciences ,Mechanics ,Condensed Matter Physics ,01 natural sciences ,Physics - Plasma Physics ,Sink (geography) ,Flattening ,010305 fluids & plasmas ,Ion ,Protein filament ,Plasma Physics (physics.plasm-ph) ,Nuclear Energy and Engineering ,Shoulder region ,0103 physical sciences ,Uniqueness ,010306 general physics ,human activities - Abstract
This paper presents the use of a novel modelling technique based around intermittent transport due to filament motion, to interpret experimental profile and fluctuation data in the scrape-off layer (SOL) of JET during the onset and evolution of a density profile shoulder. A baseline case is established, prior to shoulder formation, and the stochastic model is shown to be capable of simultaneously matching the time averaged profile measurement as well as the PDF shape and autocorrelation function from the ion-saturation current time series at the outer wall. Aspects of the stochastic model are then varied with the aim of producing a profile shoulder with statistical measurements consistent with experiment. This is achieved through a strong localised reduction in the density sink acting on the filaments within the model. The required reduction of the density sink occurs over a highly localised region with the timescale of the density sink increased by a factor of 25. This alone is found to be insufficient to model the expansion and flattening of the shoulder region as the density increases, which requires additional changes within the stochastic model. An example is found which includes both a reduction in the density sink and filament acceleration and provides a consistent match to the experimental data as the shoulder expands, though the uniqueness of this solution can not be guaranteed. Within the context of the stochastic model, this implies that the localised reduction in the density sink can trigger shoulder formation, but additional physics is required to explain the subsequent evolution of the profile.
- Published
- 2017
- Full Text
- View/download PDF
43. Overview of the JET results in support to ITER
- Author
-
Alfredo Pironti, J. Simpson-Hutchinson, Sean Conroy, J. Uljanovs, D. Middleton-Gear, G. Possnert, C. Angioni, R. McAdams, Nicholas Watkins, E. Fortuna-Zalesna, A. Garcia-Carrasco, K. Gałązka, D. Nodwell, Pasquale Gaudio, R.A. Pitts, Svetlana V. Ratynskaia, Seppo Koivuranta, O. J. Kwon, C. Boyd, A. Boboc, M. Reinhart, Igor Lengar, Jarrod Leddy, Hiroyasu Utoh, J. H. Ahn, A. Stevens, J. Lönnroth, U. Kruezi, C. Guillemaut, N. Fonnesu, W. Studholme, Marek Rubel, P. Cahyna, O. McCormack, A. S. Jacobsen, D. Mazon, Gunta Kizane, N. Ashikawa, William Tang, J. Goff, F. Nespoli, Thomas Giegerich, G. Petravich, Angela Busse, Corneliu Porosnicu, M. Bigi, M. Wheatley, Christopher N. Bowman, J. Zacks, Ivan Calvo, U. Losada, H. Weisen, B. Bauvir, Stanislas Pamela, Sylvain Brémond, M.F. Stamp, Scott W. McIntosh, A. Rakha, S. Glöggler, V. Braic, C. Bottereau, S. Murphy, S. Knott, Luigi Fortuna, P. Bunting, N. Vora, S. D. Scott, A. Lazaros, R. Dejarnac, P. Buratti, H.R. Strauss, Gabriele Croci, M. Nocente, A. Hollingsworth, S. Reynolds, D. J. Wilson, D. D. Brown, T.C. Luce, S. Zoletnik, E. Nilsson, L. Laguardia, O. Marchuk, F.P. Orsitto, E. Cecil, V. Huber, J. B. Girardo, Stylianos Varoutis, M. D. Axton, Hyun-Tae Kim, E. Safi, Ch. Day, S. Arshad, J. Rzadkiewicz, P. Prior, A. Meigs, S. Esquembri, P. Gohil, K. Purahoo, Torbjörn Hellsten, N. Tipton, R. Guirlet, E. Joffrin, V. Aldred, Calin Besliu, M. Valentinuzzi, G. T. Jones, J. Edwards, Giuseppe Ambrosino, Laurent Marot, N. Lam, F. Crisanti, G. Verona Rinati, R. Marshal, Michael L. Brown, D. Frigione, D. Chandra, Michaele Freisinger, R. Olney, Jari Varje, S. Whetham, F. Parra Diaz, M. R. Hough, P. Dinca, F. Salzedas, A. Goodyear, R. Gowland, J. A. Wilson, J. Horacek, D. King, K. Flinders, I. R. Merrigan, M. Ghate, R. Michling, F. Saint-Laurent, G. Kocsis, D. Van Eester, C. Young, R. O. Dendy, A. Meakins, N. Pace, C. L. Hunter, D. Alegre, S. Foster, V. Riccardo, M. Bulman, C. Jeong, Marek Szawlowski, B. D. Whitehead, Vasily Kiptily, James Harrison, Hiroshi Tojo, G. T. A. Huijsmans, J. W. Coenen, X. Litaudon, Justin Williams, C. Hidalgo, S. Lesnoj, I.E. Day, A. W. Morris, R. Mooney, Yann Corre, S. Brezinsek, B. Gonçalves, M. Kresina, D. Coombs, F. Köchl, J. L. Gardarein, W. Davis, Aqsa Shabbir, Kanti M. Aggarwal, L. Colas, A. B. Kukushkin, Seppo Sipilä, Elisabeth Rachlew, Leena Aho-Mantila, O. G. Pompilian, E. Viezzer, Shane Cooper, Fabio Villone, P. Blanchard, Patrick Tamain, P. Camp, T. Szabolics, C. Luna, Kalle Heinola, H. G. Esser, V. Bobkov, James Buchanan, Andrew West, Hajime Urano, Roberta Lima Gomes, J.P. Coad, Th. Pütterich, A. Sinha, S. Hollis, R. D. Wood, G. D. Ewart, F. S. Griph, T. Kobuchi, X. Lefebvre, S. Warder, A.J. Thornton, S. Peschanyi, B. Graham, Giuseppe Telesca, M. Kempenaars, J. Bernardo, M. Hughes, Eva Belonohy, S. Schmuck, Kai Nordlund, T. J. Smith, P. Hertout, K. D. Lawson, M. Brix, Matthew Sibbald, Grégoire Hornung, C. Tame, Matthew Carr, S. Wray, P. T. Doyle, A. Somers, Giuseppe Chitarin, D. C. Campling, Mitul Abhangi, I. Jepu, David A. Wood, J. Miettunen, A. Sopplesa, Raffaele Fresa, S. Saarelma, M. Bacharis, J. Pozzi, P. Vallejos Olivares, Teddy Craciunescu, Raffaele Albanese, S. Knipe, Jason P. Byrne, A. C. C. Sips, S. Hazel, V. Kazantzidis, G. Stankūnas, A. Kundu, J. Mailloux, C. Guerard, Pramit Dutta, J. E. Boom, Eduardo Alves, P. Grazier, Saskia Mordijck, V.S. Neverov, Kazuo Hoshino, A. P. Vadgama, P. D. Brennan, P. Innocente, Piergiorgio Sonato, M. Irishkin, M. Berry, D. W. Robson, Dieter Leichtle, Fabio Pisano, P. McCullen, T. M. Huddleston, Kensaku Kamiya, D. Pacella, Tommy Ahlgren, A. Kirschner, B. Magesh, A. Ash, J. Mlynář, C. Castaldo, C. Marchetto, D. L. Hillis, M. Incelli, B. Viola, R. J. Robins, E. Andersson Sundén, G. Ramogida, Matthew Reinke, Gerd Meisl, Yannis Kominis, R. Proudfoot, C. Noble, N. J. Conway, V. P. Lo Schiavo, Jorge Luis Rodriguez, Hugo Bufferand, C. H. A. Hogben, B. Evans, R. Sartori, H. Greuner, M. G. Dunne, K. Schöpf, M. I. K. Santala, E. Giovannozzi, A. E. Shevelev, C. Gil, P. Boulting, P. Sagar, A.E. Shumack, P. A. Coates, C. Ayres, R. Prakash, C. Giroud, M. Parsons, J. C. Giacalone, S. Meshchaninov, A. Peackoc, G. De Temmerman, A.C.A. Figueiredo, D. Gallart, P. Santa, Sergey Popovichev, Ivan Lupelli, M. Valovic, Thomas Johnson, Y. Martynova, M. Rack, Olivier Sauter, J. Garcia, P. Siren, I. Balboa, S. Lee, Hans Nordman, R. Roccella, M. Faitsch, Julien Hillairet, Patrick J. McCarthy, C. Reux, Irena Ivanova-Stanik, V. Coccorese, Ye. O. Kazakov, R. El-Jorf, C. Hamlyn-Harris, Matthias Weiszflog, C. F. Maggi, Panagiotis Tolias, N. C. Hawkes, E. Clark, Bruno Santos, B. Sieglin, R. Rodionov, Roch Kwiatkowski, P. Denner, C. Woodley, Hugh Summers, Francesco Pizzo, G. Pucella, D. Croft, F. Di Maio, M. Tomes, D. Molina, A. Fernades, L. Amicucci, Marco Cecconello, A. Bisoffi, Z. Ul-Abidin, J. Wilkinson, H. Maier, S. Rowe, M. Beckers, P.J. Knight, E. Pajuste, Choong-Seock Chang, K. Deakin, M. Enachescu, A. Cobalt, D. Tskhakaya Jun, Michela Gelfusa, Rémy Nouailletas, R. Ragona, N. Bonanomi, D. A. Homfray, K. Riddle, Yann Camenen, J. D. Thomas, R.P. Doerner, Timothy P. Robinson, Y. Miyoshi, Ph. Jacquet, H. T. Lambertz, D. Pulley, A. Bécoulet, E. Tholerus, O. Bogar, M. Peterka, R. Crowe, C. Sommariva, A. R. Talbot, N. K. Butler, N. Reid, R. Zagórski, Gerald Pintsuk, Juri Romazanov, Andre Neto, G. L. Ravera, Paolo Arena, A. Manning, F. Durodié, Maryna Chernyshova, D. Karkinsky, Štefan Matejčík, J. P. Thomas, A. Wilson, L. Joita, R. Naish, P. Strand, M. Balden, M. Kaufman, T. Powell, V. Schmidt, D. Barnes, José Vicente, S. Doswon, Daniel F. Valcarcel, Claudia Corradino, R. Warren, Annette M. Hynes, J. D. Strachan, A. M. Messiaen, M. Kovari, O. Omolayo, D. M. Witts, R. C. Felton, C. Fleming, C. A. Marren, Patrick Maget, J. Galdon-Quiroga, H. R. Koslowski, Bruce Lipschultz, Ana Elisa Bauer de Camargo Silva, J. Waterhouse, R. J. Dumont, M. Schneider, Sara Moradi, K. J. Nicholls, M. Beldishevski, Benedikt Geiger, A. Jardin, A. Ekedahl, A. Lyssoivan, C. Waldon, Davide Galassi, F. Jaulmes, A. Kirk, Yannick Marandet, F. Hasenbeck, Gabor Szepesi, R. C. Pereira, J. Juul Rasmussen, Nobuyuki Aiba, Michelle E. Walker, Gábor Cseh, Scott W. Mosher, R. Bastow, A. Di Siena, E. Lazzaro, M. Curuia, C. D. Challis, Z. Ghani, J. Deane, João M. C. Sousa, Henrik Sjöstrand, T. O'Gorman, H. R. Wilson, P. Devynck, M. Price, C. A. Thompson, Daniele Marocco, A. Cullen, M. Clark, M. Lennholm, D. Carralero, N. Balshaw, Roland Sabot, I. Stepanov, N. Petrella, Filippo Sartori, L. W. Packer, P. Thomas, M. Lungu, A. V. Krasilnikov, R. Young, Jonathan Graves, J. C. Hillesheim, Mǎdǎlina Vlad, Duccio Testa, Pierre Dumortier, Paulo Carvalho, M. Gosk, Yong-Su Na, M. Buckley, Carlos A. Silva, V. Fuchs, K. Vasava, P. A. Tigwell, B. Wakeling, M. Medland, M. Bellinger, K. Gal, Petter Ström, E. Veshchev, F. Nabais, A. Wynn, L. Lauro Taroni, B. Beckett, L. Gil, M. Towndrow, Brian Grierson, Harry M. Meyer, V. Philipps, A. de Castro, D. Kinna, D. Conka, Göran Ericsson, L. Piron, J. Hawkins, D. Cooper, Kenneth Hammond, V.V. Parail, Cristian Ruset, G.J. van Rooij, M. N. A. Beurskens, N. Fawlk, G. Evison, M. Van De Mortel, N. Marcenko, B. Slade, Th. Franke, Simone Peruzzo, N. den Harder, D. Baião, A. Martin de Aguilera, Frederic Imbeaux, Carlo Sozzi, J.L. de Pablos, J. Svensson, A. Withycombe, Ane Lasa, H. Sheikh, V.A. Yavorskij, Nick Walkden, E. Lerche, C. S. Gibson, Roberto Zanino, Y. Peysson, David Hatch, B. Bazylev, E. de la Cal, S. Hacquin, T. D. V. Haupt, S. A. Silburn, T.T.C. Jones, Maria Teresa Porfiri, Walid Helou, S. E. Sharapov, M. Zerbini, Ken W Bell, Marco Marinelli, Kyriakos Hizanidis, J. M. Fontdecaba, N. Teplova, K. K. Kirov, S. Vartanian, W. W. Pires de Sa, T. C. Hender, J. K. Blackburn, I. Monakhov, H. Patten, P. A. Simmons, Y. Austin, J. Regana, Stefano Coda, Amanda J. Page, D. Fuller, António J.N. Batista, A. Horton, P. Heesterman, S. Cramp, J. Hobirk, F. Clairet, A. Burckhart, M. Allinson, Larry R. Baylor, W. Leysen, D. B. Gin, P. Nielsen, A. Kantor, Yueqiang Liu, A.V. Stephen, Jose Ramon Martin-Solis, P. Mantica, B. C. Regan, Aleksander Drenik, A. Lukin, L. Thorne, G. Nemtsev, J. Denis, M. E. Graham, D. Rigamonti, W. Van Renterghem, M. Tardocchi, M. Koubiti, A. Malaquias, M. Tsalas, A. Cufar, Giuseppe Prestopino, D. Kogut, N. Pomaro, J. Keep, Jochen Linke, Shimpei Futatani, Boris Breizman, A. Sirinelli, M. Chandler, M. Fortune, F. Degli Agostini, I. Jenkins, T. Spelzini, G. Calabrò, O. N. Kent, A. Lunniss, Etienne Hodille, Z. Vizvary, Volker Naulin, T. Eich, F. Mink, A. Alkseev, P. W. Haydon, Massimo Angelone, Norberto Catarino, J. Lapins, Roberto Pasqualotto, R. Lawless, T. Schlummer, F. Bonelli, M. Wischmeier, Stéphane Devaux, G. Saibene, Dirk Reiser, Y. R. Martin, H. Bergsåker, Jon Godwin, Alessia Santucci, C. Lane, Justyna Grzonka, Ph. Mertens, Claudio Verona, David Moulton, E. Delabie, Anna Salmi, P. G. Smith, T. Bolzonella, Silvio Ceccuzzi, Ulrich Fischer, G. Liu, M. A. Henderson, M. Marinucci, T. Suzuki, Jakub Bielecki, João Figueiredo, M. Afzal, J. Cane, Robert Hager, Luciano Bertalot, M. Firdaouss, G. Tvalashvili, D. Hepple, D. Esteve, M. De Bock, Y. Baranov, R. D'Inca, G. De Tommasi, Ch. Linsmeier, T. Nicolas, I. J. Pearson, P. Finburg, Ireneusz Książek, S. Talebzadeh, A. Czarnecka, A. Botrugno, M. Gethins, Bohdan Bieg, R. Baughan, I. Borodkina, B. Kos, A. Muraro, T. Vasilopoulou, G. Hermon, S.J. Wukitch, Jari Likonen, D. P. Coster, Guglielmo Rubinacci, I. H. Coffey, Justine M. Kent, S. E. Dorling, J. Dankowski, Geert Verdoolaege, Daisuke Nishijima, R. Clarkson, E. R. Solano, M. Stephen, A. Lescinskis, P. Staniec, Karl Schmid, M. Mayer, Peter Lang, T. Franklin, M.I. Williams, C. G. Elsmore, F. Maviglia, C. Di Troia, C. Penot, A. Zarins, Pierre Manas, D. F. Gear, Yu Gao, Philipp Drews, E. Letellier, A. S. Thompson, L. Forsythe, I. Zychor, E. Khilkevich, A. Manzanares, T. Nakano, Paulo Rodrigues, J. Edmond, Sebastián Dormido-Canto, R. Dux, C. Appelbee, L. Moser, Angelo Cenedese, D. Fagan, N. Richardson, Giuseppe Gorini, V. Rohde, R. Paprok, João P. S. Bizarro, P. Aleynikov, M. Sertoli, Ł. Świderski, Simone Palazzo, O. W. Davies, D. Douai, N. Macdonald, M. Baruzzo, J. López-Razola, M. Lungaroni, D. Clatworthy, R. Bravanec, J. Lovell, Ambrogio Fasoli, S.-P. Pehkonen, M. E. Puiatti, P. Papp, G. Bodnar, V. Aslanyan, A. Weckmann, K. A. Taylor, R. Henriques, I. T. Chapman, Ewa Pawelec, Miles M. Turner, Steven J. Meitner, M. Bernert, Ph. Maquet, R. C. Meadows, A. Shaw, N. Vianello, L. Barrera Orte, Tomas Markovic, A. Fil, A. S. Couchman, Inessa Bolshakova, J. Fyvie, Konstantina Mergia, J. Gallagher, R.V. Budny, Frank Leipold, C. J. Rapson, R. C. Lobel, Gennady V. Miloshevsky, K.-D. Zastrow, Ph. Duckworth, Gianluca Rubino, G. Withenshaw, S. Maruyama, S. P. Hallworth Cook, M. Newman, Jérôme Bucalossi, P. Drewelow, Nuno Cruz, D. Iglesias, I. Nedzelski, T. Donne, P. Leichuer, R. Cesario, M. D. J. Bright, T. Boyce, N. Imazawa, Per Petersson, R. King, A. Loving, L. Garzotti, Jorge Ferreira, G. Corrigan, D. Sandiford, B. Tal, P. Puglia, Daniel Tegnered, J. Karhunen, James S. Wright, Tom Wauters, J. McKehon, K. Rathod, Olivier Février, Alessandro Formisano, Petra Bilkova, M. Groth, Ricardo Magnus Osorio Galvao, F. Medina, S. Collins, H. J. Boyer, Elena Bruno, Horacio Fernandes, M. J. Stead, R. Paccagnella, J. Kaniewski, Ion E. Stamatelatos, F. Causa, M. F. F. Nave, A. Patel, D. C. McDonald, L. Moreira, Mariano Ruiz, K. Dylst, Raymond A. Shaw, A. Brett, Jane Johnston, P. P. Pereira Puglia, J. Ongena, N. A. Benterman, V. N. Amosov, Christian Grisolia, J. Simpson, C. Perez von Thun, Jan Weiland, P. Tonner, F. Belli, T. Odupitan, T. Dittmar, Edmund Highcock, Taina Kurki-Suonio, I. Uytdenhouwen, Estelle Gauthier, M. Oberkofler, B. Alper, Iris D. Young, S. Soare, Yuji Hatano, D. Reece, D. Borodin, M. Moneti, W. Yanling, S. Mianowski, K. Fenton, Stephen J. Bailey, R. Coelho, Sandra C. Chapman, E. Łaszyńska, A. R. Field, F.J. Martínez, Anders Nielsen, M. Smithies, M. J. Mantsinen, A. J. Capel, N. D. Smith, A. Pires dos Reis, M.-L. Mayoral, T. Loarer, P. Carman, N. Grazier, S. Breton, J. M. A. Bradshaw, Alexandre C. Pereira, Fulvio Auriemma, Fulvio Militello, Barbara Cannas, D. Ulyatt, A. Kappatou, P. Blatchford, R. Scannell, B. I. Oswuigwe, Darren Price, Robert E. Grove, D. Guard, M. Leyland, G. Stubbs, J. W. Banks, V.V. Plyusnin, M. S. J. Rainford, Andrea Murari, Sanjeev Ranjan, A. Huber, V. Krasilnikov, C. Bower, H. Leggate, S. Abduallev, P. Tsavalas, G. Giruzzi, K. Maczewa, Colin Roach, P. Beaumont, R. P. Johnson, Anna Widdowson, L. A. Kogan, A. Baron Wiechec, Markus Airila, J. Morris, Robert Skilton, Katarzyna Słabkowska, M. A. Barnard, Jean-Paul Booth, Alessandro Pau, R. Price, R. Bament, M. Tokitani, I. Turner, T. Vu, P. Huynh, S.N. Gerasimov, D. I. Refy, Yunfeng Liang, Anders Hjalmarsson, S. Dalley, Roberto Ambrosino, O. Hemming, T. R. Blackman, Y. Zhou, Vasile Zoita, P. Vincenzi, A. Loarte, C. Rayner, Martin Imrisek, M. Tripsky, C. Mazzotta, A. Uccello, V. Basiuk, Lide Yao, V. Goloborod'ko, S. Villari, B. P. Duval, N. Bulmer, W. Zhang, L. Hackett, D. N. Borba, M. Halitovs, Mario Pillon, H. Arnichand, Alberto Alfier, A. Lawson, A. Masiello, T. Makkonen, A. Vitins, D. Rendell, D. Paton, L. Avotina, A. Krivska, M. Maslov, Richard Verhoeven, Marc Goniche, A. Broslawski, Marica Rebai, E. de la Luna, E. Militello-Asp, V. Cocilovo, L. Carraro, Michael Fitzgerald, Bernardo B. Carvalho, D. Young, C.G. Lowry, F. J. Casson, L.-G. Eriksson, T. M. Biewer, B. Esposito, F.G. Rimini, J. Fessey, G. Kaveney, S. Hall, Robin Barnsley, Michael Lehnen, N. Bekris, L. F. Ruchko, P. Batistoni, E. Alessi, M. G. O'Mullane, D. S. Darrow, C. N. Grundy, N. Hayter, Ivo S. Carvalho, M. Brombin, Enrico Zilli, M. Valisa, M. Reich, S. Panja, C. Gurl, Charles Harrington, Emmanuele Peluso, M. Porton, Michael Walsh, D. Falie, A. Reed, Jacob Eriksson, P. Macheta, J. M. Faustin, S. Cortes, S. Fietz, P. Piovesan, D. Ciric, Eric Nardon, R. Neu, Bojiang Ding, G.A. Rattá, F. Reimold, R. Craven, M. Cox, J. Orszagh, Aaro Järvinen, A. S. Thrysøe, A. Shepherd, I. Ďuran, Andrew M. Edwards, A. Kinch, J. Beal, M. Gherendi, Martin Köppen, D. Samaddar, P. Dalgliesh, I. Vinyar, J. Jansons, Nengchao Wang, J. Wu, John Wright, S. Wiesen, C. King, Alessandra Fanni, L. D. Horton, N. Krawczyk, J. Buch, K. Krieger, Václav Petržílka, D. Schworer, C. Watts, T. Keenan, Andrea Malizia, B. D. Stevens, P. Trimble, C. P. Lungu, V. Prajapati, Marco Ariola, C. Wellstood, S. Gilligan, Mirko Salewski, Michael Barnes, Florin Spineanu, H. Doerk, C. Kennedy, S. Jachmich, J. Caumont, Isabel L. Nunes, A. Petre, A. Kallenbach, M. Anghel, B. Lomanowski, Marco Riva, M. Romanelli, G. De Masi, T. May-Smith, T. Xu, A. Goussarov, S. Romanelli, M. Okabayashi, A. Baker, R. Salmon, T. Tala, Nicolas Fedorczak, S. Lanthaler, Giuliana Sias, J. Risner, Clarisse Bourdelle, M. E. Manso, Fabio Moro, R. Lucock, M. Bassan, M. T. Ogawa, V. Thompson, A. M. Whitehead, S. D. A. Reyes Cortes, Igor Bykov, Gennady Sergienko, E. Stefanikova, Mattia Frasca, H. Dabirikhah, Lorenzo Frassinetti, N. Dzysiuk, D. L. Keeling, Juan Manuel López, M. Turnyanskiy, Daniel Dunai, David Taylor, Arturo Buscarino, Carolina Björkas, A. Baciero, S. Meigh, M. Garcia-Munoz, Massimiliano Mattei, M. Hill, Gwyndaf Evans, S. Minucci, Xiang Gao, A. V. Chankin, Francesco Romanelli, A. Lahtinen, L. Giacomelli, A. Owen, Jesús Vega, Jonathan Citrin, Antti Hakola, Petr Vondracek, Sehyun Kwak, P. Abreu, L. Meneses, S. S. Medley, G. Gervasini, Surya K. Pathak, Kristel Crombé, M. Cleverly, H.S. Kim, C. Stan-Sion, Nobuyuki Asakura, E. Wang, A. Cardinali, L. Fazendeiro, R. Cavazzana, P. J. Lomas, J. Hawes, G. Stables, Silvia Spagnolo, S. P. Hotchin, N. R. Green, Slawomir Jednorog, Ewa Kowalska-Strzęciwilk, A. Martin, Linwei Li, Rajnikant Makwana, Richard Goulding, I. Voitsekhovitch, M. Bowden, I. Kodeli, Peter Hawkins, S. S. Henderson, Ondrej Ficker, Carl Hellesen, D. Yadikin, Fabio Subba, Luka Snoj, Anthony Laing, N. Ben Ayed, Mario Cavinato, M. Goodliffe, C. Clements, D. Kenny, Axel Klix, S. Gee, R. J. E. Smith, P. de Vries, L. Fittill, Min-Gu Yoo, S. Menmuir, K. Cave-Ayland, S. Potzel, D. Grist, K. Blackman, S. A. Robinson, Rodney Walker, David Pfefferlé, W. Broeckx, D. Harting, S. G. J. Tyrrell, F. Binda, L. Horvath, Davide Flammini, P. V. Edappala, Raul Moreno, G. M. D. Hogeweij, P. Card, A. Hagar, Ion Tiseanu, Rita Lorenzini, L. Appel, Jet Contributors, J. Flanagan, C. Paz Soldan, U. Samm, Otto Asunta, F. Eriksson, C. Taliercio, F. S. Zaitsev, G. F. Matthews, Tuomas Koskela, P. J. Howarth, D. Terranova, M. Skiba, Amanda Hubbard, R. Otin, K. G. McClements, M. Park, R. McKean, C. Christopher Klepper, I. Karnowska, Peter J. Pool, G. Ciraolo, Jennifer M. Lehmann, Institut de Mécanique des Fluides et des Solides (IMFS), Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS), VTT Technical Research Centre of Finland (VTT), Association EURATOM-TEKES, Association EURATOM-TEKES, Helsinki University of Technology, Finland, Assoc. Euratom-ENEA-CREATE, Universita Mediterranea of Reggio Calabria [Reggio Calabria], EURATOM/CCFE Fusion Association, Culham Science Centre [Abingdon], Instituto Tecnológico e Nuclear (ITN), ITN, University of Naples Federico II = Università degli studi di Napoli Federico II, Max-Planck-Institut für Plasmaphysik [Garching] (IPP), Università degli studi di Catania = University of Catania (Unict), National Institute for Fusion Science (NIFS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), ITER organization (ITER), Karlsruhe Institute of Technology (KIT), Institut de Chimie des Substances Naturelles (ICSN), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), European Fusion Development Agreement [Garching bei München] ( EFDA-CSU), Institut d'ophtalmologie Hédi-Rais de Tunis, Service Cardiologie [CHU Toulouse], Pôle Cardiovasculaire et Métabolique [CHU Toulouse], Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse), H. Niewodniczanski Institute of Nuclear Physics, Polska Akademia Nauk = Polish Academy of Sciences (PAN), Laboratoire de recherche en Hydrodynamique, Énergétique et Environnement Atmosphérique (LHEEA), École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS), Euratom/UKAEA Fusion Assoc., Magnetic Sensor laboratory [Lviv] (MSL), National Polytechnic University of Lviv (LPNU), The National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) [Moscow, Russia], Institute of Energy and Climate Research - Plasma Physics (IEK-4), Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association, Institute for Problems of Material Science, National Academy of Sciences of Ukraine (NASU), Institute of Plasma Physics [Praha], Czech Academy of Sciences [Prague] (CAS), Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Département Méthodes et Modèles Mathématiques pour l'Industrie (3MI-ENSMSE), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Centre G2I, Department of Hydraulics, Transportations and Roads, Laboratoire de microbiologie et génétique moléculaires - UMR5100 (LMGM), Centre de Biologie Intégrative (CBI), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Metallurgical & Materials Engineering Department (MS 388), University of Nevada [Reno], AUTRES, Institute of Plasma Physics and Laser Microfusion [Warsaw] (IPPLM), Culham Centre for Fusion Energy (CCFE), Astrophysics Research Centre [Belfast] (ARC), Queen's University [Belfast] (QUB), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), School of Mathematics [Cardiff], Cardiff University, Associazone EURATOM ENEA sulla Fusione, EURATOM, Laboratoire de physique des plasmas de l'ERM, Laboratorium voor plasmafysica van de KMS (LPP ERM KMS), Ecole Royale Militaire / Koninklijke Militaire School (ERM KMS), Paul-Drude-Institut für Festkörperelektronik (PDI), Institut für Physik, University of Basel (Unibas), Dutch Institute for Fundamental Energy Research [Nieuwegein] (DIFFER), Dutch Institute for Fundamental Energy Research [Eindhoven] (DIFFER), Institut Jean Lamour (IJL), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), CEA Cadarache, Dipartimento di Energia [Milano], Politecnico di Milano [Milan] (POLIMI), Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Lille économie management - UMR 9221 (LEM), Université d'Artois (UA)-Université catholique de Lille (UCL)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Euratom research and training programme 633053, Institut de Mécanique des Fluides et des Solides ( IMFS ), Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique ( CNRS ), VTT Technical Research Centre of Finland ( VTT ), Univ. Mediterranea RC, Culham Science Centre, Instituto Tecnológico e Nuclear ( ITN ), Università degli studi di Napoli Federico II, Max-Planck-Institut für Plasmaphysik [Garching] ( IPP ), Università degli studi di Catania [Catania], National Institute for Fusion Science, National Institutes of Natural Sciences, Laboratoire de Physique Nucléaire et de Hautes Énergies ( LPNHE ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), School of Geography, Earth and Environmental Sciences, ITER Organization, Karlsruhe Institute of Technology ( KIT ), Laboratoire de Nanotechnologie et d'Instrumentation Optique ( LNIO ), Institut Charles Delaunay ( ICD ), Université de Technologie de Troyes ( UTT ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Technologie de Troyes ( UTT ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de Chimie des Substances Naturelles ( ICSN ), Centre National de la Recherche Scientifique ( CNRS ), Institut de Recherche sur la Fusion par confinement Magnétique ( IRFM ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), European Fusion Development Agreement [Garching bei München] ( EFDA-CSU ), Service de cardiologie [Toulouse], Université Paul Sabatier - Toulouse 3 ( UPS ) -CHU Toulouse [Toulouse]-Hôpital de Rangueil, ITER [St. Paul-lez-Durance], ITER, Polska Akademia Nauk ( PAN ), Laboratoire de recherche en Hydrodynamique, Énergétique et Environnement Atmosphérique ( LHEEA ), École Centrale de Nantes ( ECN ) -Centre National de la Recherche Scientifique ( CNRS ), MSL, Lviv Polytechnic National University ( MSL ), Lviv Polytechnic National University, Centre d'études et de recherches appliquées à la gestion ( CERAG ), Université Pierre Mendès France - Grenoble 2 ( UPMF ) -Centre National de la Recherche Scientifique ( CNRS ), Institute of Energy and Climate Research - Plasma Physics ( IEK-4 ), Forschungszentrum Jülich GmbH, National Academy of Sciences of Ukraine ( NASU ), Lille - Economie et Management ( LEM ), Université catholique de Lille ( UCL ) -Université de Lille-Centre National de la Recherche Scientifique ( CNRS ), Czech Academy of Sciences [Prague] ( ASCR ), Physique des interactions ioniques et moléculaires ( PIIM ), Aix Marseille Université ( AMU ) -Centre National de la Recherche Scientifique ( CNRS ), Département Méthodes et Modèles Mathématiques pour l'Industrie ( 3MI-ENSMSE ), École des Mines de Saint-Étienne ( Mines Saint-Étienne MSE ), Institut Mines-Télécom [Paris]-Institut Mines-Télécom [Paris]-Centre G2I, Laboratoire de microbiologie et génétique moléculaires ( LMGM ), Université Paul Sabatier - Toulouse 3 ( UPS ) -Centre National de la Recherche Scientifique ( CNRS ), University of Nevada, Institute of Plasma Physics and Laser Microfusion [Warsaw] ( IPPLM ), UCL Department of Space and Climate Physics, University College of London [London] ( UCL ), Astrophysics Research Centre [Belfast] ( ARC ), Queen's University [Belfast] ( QUB ), Laboratoire d'Electronique et des Technologies de l'Information ( CEA-LETI ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Grenoble Alpes [Saint Martin d'Hères], Cardiff School of Mathematics, Laboratoire de physique des plasmas de l'ERM, Laboratorium voor plasmafysica van de KMS ( LPP ERM KMS ), Ecole Royale Militaire / Koninklijke Militaire School ( ERM KMS ), Paul-Drude-Institut für Festkörperelektronik, University of Basel ( Unibas ), Dutch Institute for Fundamental Energy Research [Nieuwegein] ( DIFFER ), Dutch Institute for Fundamental Energy Research [Eindhoven] ( DIFFER ), Institut Jean Lamour ( IJL ), Centre National de la Recherche Scientifique ( CNRS ) -Université de Lorraine ( UL ), Dipartimento di Energia, Politecnico di Milano [Milan], Max Planck Institute for Plasma Physics, Laboratoire de Mécanique, Modélisation et Procédés Propres ( M2P2 ), Aix Marseille Université ( AMU ) -Ecole Centrale de Marseille ( ECM ) -Centre National de la Recherche Scientifique ( CNRS ), Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. ANT - Advanced Nuclear Technologies Research Group, JET Contributors, Litaudon, X, Abduallev, S, Abhangi, M, Abreu, P, Afzal, M, Aggarwal, K, Ahlgren, T, Ahn, J, Aho Mantila, L, Aiba, N, Airila, M, Albanese, R, Aldred, V, Alegre, D, Alessi, E, Aleynikov, P, Alfier, A, Alkseev, A, Allinson, M, Alper, B, Alves, E, Ambrosino, G, Ambrosino, R, Amicucci, L, Amosov, V, Andersson Sundén, E, Angelone, M, Anghel, M, Angioni, C, Appel, L, Appelbee, C, Arena, P, Ariola, M, Arnichand, H, Arshad, S, Ash, A, Ashikawa, N, Aslanyan, V, Asunta, O, Auriemma, F, Austin, Y, Avotina, L, Axton, M, Ayres, C, Bacharis, M, Baciero, A, Baiã¡o, D, Bailey, S, Baker, A, Balboa, I, Balden, M, Balshaw, N, Bament, R, Banks, J, Baranov, Y, Barnard, M, Barnes, D, Barnes, M, Barnsley, R, Baron Wiechec, A, Barrera Orte, L, Baruzzo, M, Basiuk, V, Bassan, M, Bastow, R, Batista, A, Batistoni, P, Baughan, R, Bauvir, B, Baylor, L, Bazylev, B, Beal, J, Beaumont, P, Beckers, M, Beckett, B, Becoulet, A, Bekris, N, Beldishevski, M, Bell, K, Belli, F, Bellinger, M, Belonohy, Ã, Ben Ayed, N, Benterman, N, Bergsã¥ker, H, Bernardo, J, Bernert, M, Berry, M, Bertalot, L, Besliu, C, Beurskens, M, Bieg, B, Bielecki, J, Biewer, T, Bigi, M, Bãlkovã¡, P, Binda, F, Bisoffi, A, Bizarro, J, Bjã¶rkas, C, Blackburn, J, Blackman, K, Blackman, T, Blanchard, P, Blatchford, P, Bobkov, V, Boboc, A, Bodnã¡r, G, Bogar, O, Bolshakova, I, Bolzonella, T, Bonanomi, N, Bonelli, F, Boom, J, Booth, J, Borba, D, Borodin, D, Borodkina, I, Botrugno, A, Bottereau, C, Boulting, P, Bourdelle, C, Bowden, M, Bower, C, Bowman, C, Boyce, T, Boyd, C, Boyer, H, Bradshaw, J, Braic, V, Bravanec, R, Breizman, B, Bremond, S, Brennan, P, Breton, S, Brett, A, Brezinsek, S, Bright, M, Brix, M, Broeckx, W, Brombin, M, Broså‚awski, A, Brown, D, Brown, M, Bruno, E, Bucalossi, J, Buch, J, Buchanan, J, Buckley, M, Budny, R, Bufferand, H, Bulman, M, Bulmer, N, Bunting, P, Buratti, P, Burckhart, A, Buscarino, A, Busse, A, Butler, N, Bykov, I, Byrne, J, Cahyna, P, Calabrã², G, Calvo, I, Camenen, Y, Camp, P, Campling, D, Cane, J, Cannas, B, Capel, A, Card, P, Cardinali, A, Carman, P, Carr, M, Carralero, D, Carraro, L, Carvalho, B, Carvalho, I, Carvalho, P, Casson, F, Castaldo, C, Catarino, N, Caumont, J, Causa, F, Cavazzana, R, Cave Ayland, K, Cavinato, M, Cecconello, M, Ceccuzzi, S, Cecil, E, Cenedese, A, Cesario, R, Challis, C, Chandler, M, Chandra, D, Chang, C, Chankin, A, Chapman, I, Chapman, S, Chernyshova, M, Chitarin, G, Ciraolo, G, Ciric, D, Citrin, J, Clairet, F, Clark, E, Clark, M, Clarkson, R, Clatworthy, D, Clements, C, Cleverly, M, Coad, J, Coates, P, Cobalt, A, Coccorese, V, Cocilovo, V, Coda, S, Coelho, R, Coenen, J, Coffey, I, Colas, L, Collins, S, Conka, D, Conroy, S, Conway, N, Coombs, D, Cooper, D, Cooper, S, Corradino, C, Corre, Y, Corrigan, G, Cortes, S, Coster, D, Couchman, A, Cox, M, Craciunescu, T, Cramp, S, Craven, R, Crisanti, F, Croci, G, Croft, D, Crombã©, K, Crowe, R, Cruz, N, Cseh, G, Cufar, A, Cullen, A, Curuia, M, Czarnecka, A, Dabirikhah, H, Dalgliesh, P, Dalley, S, Dankowski, J, Darrow, D, Davies, O, Davis, W, Day, C, Day, I, De Bock, M, De Castro, A, De La Cal, E, De La Luna, E, De Masi, G, De Pablos, J, De Temmerman, G, De Tommasi, G, De Vries, P, Deakin, K, Deane, J, Degli Agostini, F, Dejarnac, R, Delabie, E, Den Harder, N, Dendy, R, Denis, J, Denner, P, Devaux, S, Devynck, P, Di Maio, F, Di Siena, A, Di Troia, C, Dinca, P, D'Inca, R, Ding, B, Dittmar, T, Doerk, H, Doerner, R, Donnã©, T, Dorling, S, Dormido Canto, S, Doswon, S, Douai, D, Doyle, P, Drenik, A, Drewelow, P, Drews, P, Duckworth, P, Dumont, R, Dumortier, P, Dunai, D, Dunne, M, Äžuran, I, Durodiã©, F, Dutta, P, Duval, B, Dux, R, Dylst, K, Dzysiuk, N, Edappala, P, Edmond, J, Edwards, A, Edwards, J, Eich, T, Ekedahl, A, El Jorf, R, Elsmore, C, Enachescu, M, Ericsson, G, Eriksson, F, Eriksson, J, Eriksson, L, Esposito, B, Esquembri, S, Esser, H, Esteve, D, Evans, B, Evans, G, Evison, G, Ewart, G, Fagan, D, Faitsch, M, Falie, D, Fanni, A, Fasoli, A, Faustin, J, Fawlk, N, Fazendeiro, L, Fedorczak, N, Felton, R, Fenton, K, Fernades, A, Fernandes, H, Ferreira, J, Fessey, J, Fã©vrier, O, Ficker, O, Field, A, Fietz, S, Figueiredo, A, Figueiredo, J, Fil, A, Finburg, P, Firdaouss, M, Fischer, U, Fittill, L, Fitzgerald, M, Flammini, D, Flanagan, J, Fleming, C, Flinders, K, Fonnesu, N, Fontdecaba, J, Formisano, A, Forsythe, L, Fortuna, L, Fortuna Zalesna, E, Fortune, M, Foster, S, Franke, T, Franklin, T, Frasca, M, Frassinetti, L, Freisinger, M, Fresa, R, Frigione, D, Fuchs, V, Fuller, D, Futatani, S, Fyvie, J, Gã¡l, K, Galassi, D, Gaå‚azka, K, Galdon Quiroga, J, Gallagher, J, Gallart, D, Galvã¡o, R, Gao, X, Gao, Y, Garcia, J, Garcia Carrasco, A, GarcÃa Muñoz, M, Gardarein, J, Garzotti, L, Gaudio, P, Gauthier, E, Gear, D, Gee, S, Geiger, B, Gelfusa, M, Gerasimov, S, Gervasini, G, Gethins, M, Ghani, Z, Ghate, M, Gherendi, M, Giacalone, J, Giacomelli, L, Gibson, C, Giegerich, T, Gil, C, Gil, L, Gilligan, S, Gin, D, Giovannozzi, E, Girardo, J, Giroud, C, Giruzzi, G, Glã¶ggler, S, Godwin, J, Goff, J, Gohil, P, Goloborod'Ko, V, Gomes, R, Goncalves, B, Goniche, M, Goodliffe, M, Goodyear, A, Gorini, G, Gosk, M, Goulding, R, Goussarov, A, Gowland, R, Graham, B, Graham, M, Graves, J, Grazier, N, Grazier, P, Green, N, Greuner, H, Grierson, B, Griph, F, Grisolia, C, Grist, D, Groth, M, Grove, R, Grundy, C, Grzonka, J, Guard, D, Guã©rard, C, Guillemaut, C, Guirlet, R, Gurl, C, Utoh, H, Hackett, L, Hacquin, S, Hagar, A, Hager, R, Hakola, A, Halitovs, M, Hall, S, Hallworth Cook, S, Hamlyn Harris, C, Hammond, K, Harrington, C, Harrison, J, Harting, D, Hasenbeck, F, Hatano, Y, Hatch, D, Haupt, T, Hawes, J, Hawkes, N, Hawkins, J, Hawkins, P, Haydon, P, Hayter, N, Hazel, S, Heesterman, P, Heinola, K, Hellesen, C, Hellsten, T, Helou, W, Hemming, O, Hender, T, Henderson, M, Henderson, S, Henriques, R, Hepple, D, Hermon, G, Hertout, P, Hidalgo, C, Highcock, E, Hill, M, Hillairet, J, Hillesheim, J, Hillis, D, Hizanidis, K, Hjalmarsson, A, Hobirk, J, Hodille, E, Hogben, C, Hogeweij, G, Hollingsworth, A, Hollis, S, Homfray, D, Horã¡ä ek, J, Hornung, G, Horton, A, Horton, L, Horvath, L, Hotchin, S, Hough, M, Howarth, P, Hubbard, A, Huber, A, Huber, V, Huddleston, T, Hughes, M, Huijsmans, G, Hunter, C, Huynh, P, Hynes, A, Iglesias, D, Imazawa, N, Imbeaux, F, Imrãå¡ek, M, Incelli, M, Innocente, P, Irishkin, M, Ivanova Stanik, I, Jachmich, S, Jacobsen, A, Jacquet, P, Jansons, J, Jardin, A, Jã¤rvinen, A, Jaulmes, F, Jednorã³g, S, Jenkins, I, Jeong, C, Jepu, I, Joffrin, E, Johnson, R, Johnson, T, Johnston, J, Joita, L, Jones, G, Jones, T, Hoshino, K, Kallenbach, A, Kamiya, K, Kaniewski, J, Kantor, A, Kappatou, A, Karhunen, J, Karkinsky, D, Karnowska, I, Kaufman, M, Kaveney, G, Kazakov, Y, Kazantzidis, V, Keeling, D, Keenan, T, Keep, J, Kempenaars, M, Kennedy, C, Kenny, D, Kent, J, Kent, O, Khilkevich, E, Kim, H, Kinch, A, King, C, King, D, King, R, Kinna, D, Kiptily, V, Kirk, A, Kirov, K, Kirschner, A, Kizane, G, Klepper, C, Klix, A, Knight, P, Knipe, S, Knott, S, Kobuchi, T, Kã¶chl, F, Kocsis, G, Kodeli, I, Kogan, L, Kogut, D, Koivuranta, S, Kominis, Y, Kã¶ppen, M, Kos, B, Koskela, T, Koslowski, H, Koubiti, M, Kovari, M, Kowalska StrzÈ©ciwilk, E, Krasilnikov, A, Krasilnikov, V, Krawczyk, N, Kresina, M, Krieger, K, Krivska, A, Kruezi, U, Ksiaå¼ek, I, Kukushkin, A, Kundu, A, Kurki Suonio, T, Kwak, S, Kwiatkowski, R, Kwon, O, Laguardia, L, Lahtinen, A, Laing, A, Lam, N, Lambertz, H, Lane, C, Lang, P, Lanthaler, S, Lapins, J, Lasa, A, Last, J, Å aszyå„ska, E, Lawless, R, Lawson, A, Lawson, K, Lazaros, A, Lazzaro, E, Leddy, J, Lee, S, Lefebvre, X, Leggate, H, Lehmann, J, Lehnen, M, Leichtle, D, Leichuer, P, Leipold, F, Lengar, I, Lennholm, M, Lerche, E, Lescinskis, A, Lesnoj, S, Letellier, E, Leyland, M, Leysen, W, Li, L, Liang, Y, Likonen, J, Linke, J, Linsmeier, C, Lipschultz, B, Liu, G, Liu, Y, Lo Schiavo, V, Loarer, T, Loarte, A, Lobel, R, Lomanowski, B, Lomas, P, Lã¶nnroth, J, Lã³pez, J, López Razola, J, Lorenzini, R, Losada, U, Lovell, J, Loving, A, Lowry, C, Luce, T, Lucock, R, Lukin, A, Luna, C, Lungaroni, M, Lungu, C, Lungu, M, Lunniss, A, Lupelli, I, Lyssoivan, A, Macdonald, N, Macheta, P, Maczewa, K, Magesh, B, Maget, P, Maggi, C, Maier, H, Mailloux, J, Makkonen, T, Makwana, R, Malaquias, A, Malizia, A, Manas, P, Manning, A, Manso, M, Mantica, P, Mantsinen, M, Manzanares, A, Maquet, P, Marandet, Y, Marcenko, N, Marchetto, C, Marchuk, O, Marinelli, M, Marinucci, M, Markoviä , T, Marocco, D, Marot, L, Marren, C, Marshal, R, Martin, A, Martin, Y, MartÃn De Aguilera, A, Martãnez, F, MartÃn SolÃs, J, Martynova, Y, Maruyama, S, Masiello, A, Maslov, M, Matejcik, S, Mattei, M, Matthews, G, Maviglia, F, Mayer, M, Mayoral, M, May Smith, T, Mazon, D, Mazzotta, C, Mcadams, R, Mccarthy, P, Mcclements, K, Mccormack, O, Mccullen, P, Mcdonald, D, Mcintosh, S, Mckean, R, Mckehon, J, Meadows, R, Meakins, A, Medina, F, Medland, M, Medley, S, Meigh, S, Meigs, A, Meisl, G, Meitner, S, Meneses, L, Menmuir, S, Mergia, K, Merrigan, I, Mertens, P, Meshchaninov, S, Messiaen, A, Meyer, H, Mianowski, S, Michling, R, Middleton Gear, D, Miettunen, J, Militello, F, Militello Asp, E, Miloshevsky, G, Mink, F, Minucci, S, Miyoshi, Y, Mlynã¡å™, J, Molina, D, Monakhov, I, Moneti, M, Mooney, R, Moradi, S, Mordijck, S, Moreira, L, Moreno, R, Moro, F, Morris, A, Morris, J, Moser, L, Mosher, S, Moulton, D, Murari, A, Muraro, A, Murphy, S, Asakura, N, Na, Y, Nabais, F, Naish, R, Nakano, T, Nardon, E, Naulin, V, Nave, M, Nedzelski, I, Nemtsev, G, Nespoli, F, Neto, A, Neu, R, Neverov, V, Newman, M, Nicholls, K, Nicolas, T, Nielsen, A, Nielsen, P, Nilsson, E, Nishijima, D, Noble, C, Nocente, M, Nodwell, D, Nordlund, K, Nordman, H, Nouailletas, R, Nunes, I, Oberkofler, M, Odupitan, T, Ogawa, M, O'Gorman, T, Okabayashi, M, Olney, R, Omolayo, O, O'Mullane, M, Ongena, J, Orsitto, F, Orszagh, J, Oswuigwe, B, Otin, R, Owen, A, Paccagnella, R, Pace, N, Pacella, D, Packer, L, Page, A, Pajuste, E, Palazzo, S, Pamela, S, Panja, S, Papp, P, Paprok, R, Parail, V, Park, M, Parra Diaz, F, Parsons, M, Pasqualotto, R, Patel, A, Pathak, S, Paton, D, Patten, H, Pau, A, Pawelec, E, Paz Soldan, C, Peackoc, A, Pearson, I, Pehkonen, S, Peluso, E, Penot, C, Pereira, A, Pereira, R, Pereira Puglia, P, Perez Von Thun, C, Peruzzo, S, Peschanyi, S, Peterka, M, Petersson, P, Petravich, G, Petre, A, Petrella, N, Petrå¾ilka, V, Peysson, Y, Pfefferlã©, D, Philipps, V, Pillon, M, Pintsuk, G, Piovesan, P, Pires Dos Reis, A, Piron, L, Pironti, A, Pisano, F, Pitts, R, Pizzo, F, Plyusnin, V, Pomaro, N, Pompilian, O, Pool, P, Popovichev, S, Porfiri, M, Porosnicu, C, Porton, M, Possnert, G, Potzel, S, Powell, T, Pozzi, J, Prajapati, V, Prakash, R, Prestopino, G, Price, D, Price, M, Price, R, Prior, P, Proudfoot, R, Pucella, G, Puglia, P, Puiatti, M, Pulley, D, Purahoo, K, Pã¼tterich, T, Rachlew, E, Rack, M, Ragona, R, Rainford, M, Rakha, A, Ramogida, G, Ranjan, S, Rapson, C, Rasmussen, J, Rathod, K, Rattã¡, G, Ratynskaia, S, Ravera, G, Rayner, C, Rebai, M, Reece, D, Reed, A, Rã©fy, D, Regan, B, Regaã±a, J, Reich, M, Reid, N, Reimold, F, Reinhart, M, Reinke, M, Reiser, D, Rendell, D, Reux, C, Reyes Cortes, S, Reynolds, S, Riccardo, V, Richardson, N, Riddle, K, Rigamonti, D, Rimini, F, Risner, J, Riva, M, Roach, C, Robins, R, Robinson, S, Robinson, T, Robson, D, Roccella, R, Rodionov, R, Rodrigues, P, Rodriguez, J, Rohde, V, Romanelli, F, Romanelli, M, Romanelli, S, Romazanov, J, Rowe, S, Rubel, M, Rubinacci, G, Rubino, G, Ruchko, L, Ruiz, M, Ruset, C, Rzadkiewicz, J, Saarelma, S, Sabot, R, Safi, E, Sagar, P, Saibene, G, Saint Laurent, F, Salewski, M, Salmi, A, Salmon, R, Salzedas, F, Samaddar, D, Samm, U, Sandiford, D, Santa, P, Santala, M, Santos, B, Santucci, A, Sartori, F, Sartori, R, Sauter, O, Scannell, R, Schlummer, T, Schmid, K, Schmidt, V, Schmuck, S, Schneider, M, Schã¶pf, K, Schwã¶rer, D, Scott, S, Sergienko, G, Sertoli, M, Shabbir, A, Sharapov, S, Shaw, A, Shaw, R, Sheikh, H, Shepherd, A, Shevelev, A, Shumack, A, Sias, G, Sibbald, M, Sieglin, B, Silburn, S, Silva, A, Silva, C, Simmons, P, Simpson, J, Simpson Hutchinson, J, Sinha, A, Sipilã¤, S, Sips, A, Sirã©n, P, Sirinelli, A, Sjã¶strand, H, Skiba, M, Skilton, R, Slabkowska, K, Slade, B, Smith, N, Smith, P, Smith, R, Smith, T, Smithies, M, Snoj, L, Soare, S, Solano, E, Somers, A, Sommariva, C, Sonato, P, Sopplesa, A, Sousa, J, Sozzi, C, Spagnolo, S, Spelzini, T, Spineanu, F, Stables, G, Stamatelatos, I, Stamp, M, Staniec, P, Stankå«nas, G, Stan Sion, C, Stead, M, Stefanikova, E, Stepanov, I, Stephen, A, Stephen, M, Stevens, A, Stevens, B, Strachan, J, Strand, P, Strauss, H, Strã¶m, P, Stubbs, G, Studholme, W, Subba, F, Summers, H, Svensson, J, Åšwiderski, Å, Szabolics, T, Szawlowski, M, Szepesi, G, Suzuki, T, Tã¡l, B, Tala, T, Talbot, A, Talebzadeh, S, Taliercio, C, Tamain, P, Tame, C, Tang, W, Tardocchi, M, Taroni, L, Taylor, D, Taylor, K, Tegnered, D, Telesca, G, Teplova, N, Terranova, D, Testa, D, Tholerus, E, Thomas, J, Thomas, P, Thompson, A, Thompson, C, Thompson, V, Thorne, L, Thornton, A, Thrysã¸e, A, Tigwell, P, Tipton, N, Tiseanu, I, Tojo, H, Tokitani, M, Tolias, P, Tomeå¡, M, Tonner, P, Towndrow, M, Trimble, P, Tripsky, M, Tsalas, M, Tsavalas, P, Tskhakaya Jun, D, Turner, I, Turner, M, Turnyanskiy, M, Tvalashvili, G, Tyrrell, S, Uccello, A, Ul Abidin, Z, Uljanovs, J, Ulyatt, D, Urano, H, Uytdenhouwen, I, Vadgama, A, Valcarcel, D, Valentinuzzi, M, Valisa, M, Vallejos Olivares, P, Valovic, M, Van De Mortel, M, Van Eester, D, Van Renterghem, W, Van Rooij, G, Varje, J, Varoutis, S, Vartanian, S, Vasava, K, Vasilopoulou, T, Vega, J, Verdoolaege, G, Verhoeven, R, Verona, C, Verona Rinati, G, Veshchev, E, Vianello, N, Vicente, J, Viezzer, E, Villari, S, Villone, F, Vincenzi, P, Vinyar, I, Viola, B, Vitins, A, Vizvary, Z, Vlad, M, Voitsekhovitch, I, Vondrã¡ä ek, P, Vora, N, Vu, T, Pires De Sa, W, Wakeling, B, Waldon, C, Walkden, N, Walker, M, Walker, R, Walsh, M, Wang, E, Wang, N, Warder, S, Warren, R, Waterhouse, J, Watkins, N, Watts, C, Wauters, T, Weckmann, A, Weiland, J, Weisen, H, Weiszflog, M, Wellstood, C, West, A, Wheatley, M, Whetham, S, Whitehead, A, Whitehead, B, Widdowson, A, Wiesen, S, Wilkinson, J, Williams, J, Williams, M, Wilson, A, Wilson, D, Wilson, H, Wilson, J, Wischmeier, M, Withenshaw, G, Withycombe, A, Witts, D, Wood, D, Wood, R, Woodley, C, Wray, S, Wright, J, Wu, J, Wukitch, S, Wynn, A, Xu, T, Yadikin, D, Yanling, W, Yao, L, Yavorskij, V, Yoo, M, Young, C, Young, D, Young, I, Young, R, Zacks, J, Zagorski, R, Zaitsev, F, Zanino, R, Zarins, A, Zastrow, K, Zerbini, M, Zhang, W, Zhou, Y, Zilli, E, Zoita, V, Zoletnik, S, Zychor, I, Materials Physics, Department of Physics, European Commission, Litaudon, X., Abduallev, S., Abhangi, M., Abreu, P., Afzal, M., Aggarwal, K. M., Ahlgren, T., Ahn, J. H., Aho-Mantila, L., Aiba, N., Airila, M., Albanese, R., Aldred, V., Alegre, D., Alessi, E., Aleynikov, P., Alfier, A., Alkseev, A., Allinson, M., Alper, B., Alves, E., Ambrosino, G., Ambrosino, R., Amicucci, L., Amosov, V., Andersson Sundén, E., Angelone, M., Anghel, M., Angioni, C., Appel, L., Appelbee, C., Arena, P., Ariola, M., Arnichand, H., Arshad, S., Ash, A., Ashikawa, N., Aslanyan, V., Asunta, O., Auriemma, F., Austin, Y., Avotina, L., Axton, M. D., Ayres, C., Bacharis, M., Baciero, A., Baião, D., Bailey, S., Baker, A., Balboa, I., Balden, M., Balshaw, N., Bament, R., Banks, J. W., Baranov, Y. F., Barnard, M. A., Barnes, D., Barnes, M., Barnsley, R., Baron Wiechec, A., Barrera Orte, L., Baruzzo, M., Basiuk, V., Bassan, M., Bastow, R., Batista, A., Batistoni, P., Baughan, R., Bauvir, B., Baylor, L., Bazylev, B., Beal, J., Beaumont, P. S., Beckers, M., Beckett, B., Becoulet, A., Bekris, N., Beldishevski, M., Bell, K., Belli, F., Bellinger, M., Belonohy, É., Ben Ayed, N., Benterman, N. A., Bergsåker, H., Bernardo, J., Bernert, M., Berry, M., Bertalot, L., Besliu, C., Beurskens, M., Bieg, B., Bielecki, J., Biewer, T., Bigi, M., Bílková, P., Binda, F., Bisoffi, A., Bizarro, J. P. S., Björkas, C., Blackburn, J., Blackman, K., Blackman, T. R., Blanchard, P., Blatchford, P., Bobkov, V., Boboc, A., Bodnár, G., Bogar, O., Bolshakova, I., Bolzonella, T., Bonanomi, N., Bonelli, F., Boom, J., Booth, J., Borba, D., Borodin, D., Borodkina, I., Botrugno, A., Bottereau, C., Boulting, P., Bourdelle, C., Bowden, M., Bower, C., Bowman, C., Boyce, T., Boyd, C., Boyer, H. J., Bradshaw, J. M. A., Braic, V., Bravanec, R., Breizman, B., Bremond, S., Brennan, P. D., Breton, S., Brett, A., Brezinsek, S., Bright, M. D. J., Brix, M., Broeckx, W., Brombin, M., Brosławski, A., Brown, D. P. D., Brown, M., Bruno, E., Bucalossi, J., Buch, J., Buchanan, J., Buckley, M. A., Budny, R., Bufferand, H., Bulman, M., Bulmer, N., Bunting, P., Buratti, P., Burckhart, A., Buscarino, A., Busse, A., Butler, N. K., Bykov, I., Byrne, J., Cahyna, P., Calabrò, G., Calvo, I., Camenen, Y., Camp, P., Campling, D. C., Cane, J., Cannas, B., Capel, A. J., Card, P. J., Cardinali, A., Carman, P., Carr, M., Carralero, D., Carraro, L., Carvalho, B. B., Carvalho, I., Carvalho, P., Casson, F. J., Castaldo, C., Catarino, N., Caumont, J., Causa, F., Cavazzana, R., Cave-Ayland, K., Cavinato, M., Cecconello, M., Ceccuzzi, S., Cecil, E., Cenedese, A., Cesario, R., Challis, C. D., Chandler, M., Chandra, D., Chang, C. S., Chankin, A., Chapman, I. T., Chapman, S. C., Chernyshova, M., Chitarin, G., Ciraolo, G., Ciric, D., Citrin, J., Clairet, F., Clark, E., Clark, M., Clarkson, R., Clatworthy, D., Clements, C., Cleverly, M., Coad, J. P., Coates, P. A., Cobalt, A., Coccorese, V., Cocilovo, V., Coda, S., Coelho, R., Coenen, J. W., Coffey, I., Colas, L., Collins, S., Conka, D., Conroy, S., Conway, N., Coombs, D., Cooper, D., Cooper, S. R., Corradino, C., Corre, Y., Corrigan, G., Cortes, S., Coster, D., Couchman, A. S., Cox, M. P., Craciunescu, T., Cramp, S., Craven, R., Crisanti, F., Croci, G., Croft, D., Crombé, K., Crowe, R., Cruz, N., Cseh, G., Cufar, A., Cullen, A., Curuia, M., Czarnecka, A., Dabirikhah, H., Dalgliesh, P., Dalley, S., Dankowski, J., Darrow, D., Davies, O., Davis, W., Day, C., Day, I. E., De Bock, M., de Castro, A., de la Cal, E., de la Luna, E., De Masi, G., de Pablos, J. L., De Temmerman, G., De Tommasi, G., de Vries, P., Deakin, K., Deane, J., Degli Agostini, F., Dejarnac, R., Delabie, E., den Harder, N., Dendy, R. O., Denis, J., Denner, P., Devaux, S., Devynck, P., Di Maio, F., Di Siena, A., Di Troia, C., Dinca, P., D’Inca, R., Ding, B., Dittmar, T., Doerk, H., Doerner, R. P., Donné, T., Dorling, S. E., Dormido-Canto, S., Doswon, S., Douai, D., Doyle, P. T., Drenik, A., Drewelow, P., Drews, P., Duckworth, Ph., Dumont, R., Dumortier, P., Dunai, D., Dunne, M., Ďuran, I., Durodié, F., Dutta, P., Duval, B. P., Dux, R., Dylst, K., Dzysiuk, N., Edappala, P. V., Edmond, J., Edwards, A. M., Edwards, J., Eich, Th., Ekedahl, A., El-Jorf, R., Elsmore, C. G., Enachescu, M., Ericsson, G., Eriksson, F., Eriksson, J., Eriksson, L. G., Esposito, B., Esquembri, S., Esser, H. G., Esteve, D., Evans, B., Evans, G. E., Evison, G., Ewart, G. D., Fagan, D., Faitsch, M., Falie, D., Fanni, A., Fasoli, A., Faustin, J. M., Fawlk, N., Fazendeiro, L., Fedorczak, N., Felton, R. C., Fenton, K., Fernades, A., Fernandes, H., Ferreira, J., Fessey, J. A., Février, O., Ficker, O., Field, A., Fietz, S., Figueiredo, A., Figueiredo, J., Fil, A., Finburg, P., Firdaouss, M., Fischer, U., Fittill, L., Fitzgerald, M., Flammini, D., Flanagan, J., Fleming, C., Flinders, K., Fonnesu, N., Fontdecaba, J. M., Formisano, A., Forsythe, L., Fortuna, L., Fortuna-Zalesna, E., Fortune, M., Foster, S., Franke, T., Franklin, T., Frasca, M., Frassinetti, L., Freisinger, M., Fresa, R., Frigione, D., Fuchs, V., Fuller, D., Futatani, S., Fyvie, J., Gál, K., Galassi, D., Gałązka, K., Galdon-Quiroga, J., Gallagher, J., Gallart, D., Galvão, R., Gao, X., Gao, Y., Garcia, J., Garcia-Carrasco, A., García-Muñoz, M., Gardarein, J. -L., Garzotti, L., Gaudio, P., Gauthier, E., Gear, D. F., Gee, S. J., Geiger, B., Gelfusa, M., Gerasimov, S., Gervasini, G., Gethins, M., Ghani, Z., Ghate, M., Gherendi, M., Giacalone, J. C., Giacomelli, L., Gibson, C. S., Giegerich, T., Gil, C., Gil, L., Gilligan, S., Gin, D., Giovannozzi, E., Girardo, J. B., Giroud, C., Giruzzi, G., Glöggler, S., Godwin, J., Goff, J., Gohil, P., Goloborod’Ko, V., Gomes, R., Gonçalves, B., Goniche, M., Goodliffe, M., Goodyear, A., Gorini, G., Gosk, M., Goulding, R., Goussarov, A., Gowland, R., Graham, B., Graham, M. E., Graves, J. P., Grazier, N., Grazier, P., Green, N. R., Greuner, H., Grierson, B., Griph, F. S., Grisolia, C., Grist, D., Groth, M., Grove, R., Grundy, C. N., Grzonka, J., Guard, D., Guérard, C., Guillemaut, C., Guirlet, R., Gurl, C., Utoh, H. H., Hackett, L. J., Hacquin, S., Hagar, A., Hager, R., Hakola, A., Halitovs, M., Hall, S. J., Hallworth Cook, S. P., Hamlyn-Harris, C., Hammond, K., Harrington, C., Harrison, J., Harting, D., Hasenbeck, F., Hatano, Y., Hatch, D. R., Haupt, T. D. V., Hawes, J., Hawkes, N. C., Hawkins, J., Hawkins, P., Haydon, P. W., Hayter, N., Hazel, S., Heesterman, P. J. L., Heinola, K., Hellesen, C., Hellsten, T., Helou, W., Hemming, O. N., Hender, T. C., Henderson, M., Henderson, S. S., Henriques, R., Hepple, D., Hermon, G., Hertout, P., Hidalgo, C., Highcock, E. G., Hill, M., Hillairet, J., Hillesheim, J., Hillis, D., Hizanidis, K., Hjalmarsson, A., Hobirk, J., Hodille, E., Hogben, C. H. A., Hogeweij, G. M. D., Hollingsworth, A., Hollis, S., Homfray, D. A., Horáček, J., Hornung, G., Horton, A. R., Horton, L. D., Horvath, L., Hotchin, S. P., Hough, M. R., Howarth, P. J., Hubbard, A., Huber, A., Huber, V., Huddleston, T. M., Hughes, M., Huijsmans, G. T. A., Hunter, C. L., Huynh, P., Hynes, A. M., Iglesias, D., Imazawa, N., Imbeaux, F., Imríšek, M., Incelli, M., Innocente, P., Irishkin, M., Ivanova-Stanik, I., Jachmich, S., Jacobsen, A. S., Jacquet, P., Jansons, J., Jardin, A., Järvinen, A., Jaulmes, F., Jednoróg, S., Jenkins, I., Jeong, C., Jepu, I., Joffrin, E., Johnson, R., Johnson, T., Johnston, Jane, Joita, L., Jones, G., Jones, T. T. C., Hoshino, K. K., Kallenbach, A., Kamiya, K., Kaniewski, J., Kantor, A., Kappatou, A., Karhunen, J., Karkinsky, D., Karnowska, I., Kaufman, M., Kaveney, G., Kazakov, Y., Kazantzidis, V., Keeling, D. L., Keenan, T., Keep, J., Kempenaars, M., Kennedy, C., Kenny, D., Kent, J., Kent, O. N., Khilkevich, E., Kim, H. T., Kim, H. S., Kinch, A., King, C., King, D., King, R. F., Kinna, D. J., Kiptily, V., Kirk, A., Kirov, K., Kirschner, A., Kizane, G., Klepper, C., Klix, A., Knight, P., Knipe, S. J., Knott, S., Kobuchi, T., Köchl, F., Kocsis, G., Kodeli, I., Kogan, L., Kogut, D., Koivuranta, S., Kominis, Y., Köppen, M., Kos, B., Koskela, T., Koslowski, H. R., Koubiti, M., Kovari, M., Kowalska-Strzęciwilk, E., Krasilnikov, A., Krasilnikov, V., Krawczyk, N., Kresina, M., Krieger, K., Krivska, A., Kruezi, U., Książek, I., Kukushkin, A., Kundu, A., Kurki-Suonio, T., Kwak, S., Kwiatkowski, R., Kwon, O. J., Laguardia, L., Lahtinen, A., Laing, A., Lam, N., Lambertz, H. T., Lane, C., Lang, P. T., Lanthaler, S., Lapins, J., Lasa, A., Last, J. R., Łaszyńska, E., Lawless, R., Lawson, A., Lawson, K. D., Lazaros, A., Lazzaro, E., Leddy, J., Lee, S., Lefebvre, X., Leggate, H. J., Lehmann, J., Lehnen, M., Leichtle, D., Leichuer, P., Leipold, F., Lengar, I., Lennholm, M., Lerche, E., Lescinskis, A., Lesnoj, S., Letellier, E., Leyland, M., Leysen, W., Li, L., Liang, Y., Likonen, J., Linke, J., Linsmeier, Ch., Lipschultz, B., Liu, G., Liu, Y., Lo Schiavo, V. P., Loarer, T., Loarte, A., Lobel, R. C., Lomanowski, B., Lomas, P. J., Lönnroth, J., López, J. M., López-Razola, J., Lorenzini, R., Losada, U., Lovell, J. J., Loving, A. B., Lowry, C., Luce, T., Lucock, R. M. A., Lukin, A., Luna, C., Lungaroni, M., Lungu, C. P., Lungu, M., Lunniss, A., Lupelli, I., Lyssoivan, A., Macdonald, N., Macheta, P., Maczewa, K., Magesh, B., Maget, P., Maggi, C., Maier, H., Mailloux, J., Makkonen, T., Makwana, R., Malaquias, A., Malizia, A., Manas, P., Manning, A., Manso, M. E., Mantica, P., Mantsinen, M., Manzanares, A., Maquet, Ph., Marandet, Y., Marcenko, N., Marchetto, C., Marchuk, O., Marinelli, M., Marinucci, M., Markovič, T., Marocco, D., Marot, L., Marren, C. A., Marshal, R., Martin, A., Martin, Y., Martín de Aguilera, A., Martínez, F. J., Martín-Solís, J. R., Martynova, Y., Maruyama, S., Masiello, A., Maslov, M., Matejcik, S., Mattei, M., Matthews, G. F., Maviglia, F., Mayer, M., Mayoral, M. L., May-Smith, T., Mazon, D., Mazzotta, C., Mcadams, R., Mccarthy, P. J., Mcclements, K. G., Mccormack, O., Mccullen, P. A., Mcdonald, D., Mcintosh, S., Mckean, R., Mckehon, J., Meadows, R. C., Meakins, A., Medina, F., Medland, M., Medley, S., Meigh, S., Meigs, A. G., Meisl, G., Meitner, S., Meneses, L., Menmuir, S., Mergia, K., Merrigan, I. R., Mertens, Ph., Meshchaninov, S., Messiaen, A., Meyer, H., Mianowski, S., Michling, R., Middleton-Gear, D., Miettunen, J., Militello, F., Militello-Asp, E., Miloshevsky, G., Mink, F., Minucci, S., Miyoshi, Y., Mlynář, J., Molina, D., Monakhov, I., Moneti, M., Mooney, R., Moradi, S., Mordijck, S., Moreira, L., Moreno, R., Moro, F., Morris, A. W., Morris, J., Moser, L., Mosher, S., Moulton, D., Murari, A., Muraro, A., Murphy, S., Asakura, N. N., Na, Y. S., Nabais, F., Naish, R., Nakano, T., Nardon, E., Naulin, V., Nave, M. F. F., Nedzelski, I., Nemtsev, G., Nespoli, F., Neto, A., Neu, R., Neverov, V. S., Newman, M., Nicholls, K. J., Nicolas, T., Nielsen, A. H., Nielsen, P., Nilsson, E., Nishijima, D., Noble, C., Nocente, M., Nodwell, D., Nordlund, K., Nordman, H., Nouailletas, R., Nunes, I., Oberkofler, M., Odupitan, T., Ogawa, M. T., O’Gorman, T., Okabayashi, M., Olney, R., Omolayo, O., O’Mullane, M., Ongena, J., Orsitto, F., Orszagh, J., Oswuigwe, B. I., Otin, R., Owen, A., Paccagnella, R., Pace, N., Pacella, D., Packer, L. W., Page, A., Pajuste, E., Palazzo, S., Pamela, S., Panja, S., Papp, P., Paprok, R., Parail, V., Park, M., Parra Diaz, F., Parsons, M., Pasqualotto, R., Patel, A., Pathak, S., Paton, D., Patten, H., Pau, A., Pawelec, E., Paz Soldan, C., Peackoc, A., Pearson, I. J., Pehkonen, S. -P., Peluso, E., Penot, C., Pereira, A., Pereira, R., Pereira Puglia, P. P., Perez von Thun, C., Peruzzo, S., Peschanyi, S., Peterka, M., Petersson, P., Petravich, G., Petre, A., Petrella, N., Petržilka, V., Peysson, Y., Pfefferlé, D., Philipps, V., Pillon, M., Pintsuk, G., Piovesan, P., Pires dos Reis, A., Piron, L., Pironti, A., Pisano, F., Pitts, R., Pizzo, F., Plyusnin, V., Pomaro, N., Pompilian, O. G., Pool, P. J., Popovichev, S., Porfiri, M. T., Porosnicu, C., Porton, M., Possnert, G., Potzel, S., Powell, T., Pozzi, J., Prajapati, V., Prakash, R., Prestopino, G., Price, D., Price, M., Price, R., Prior, P., Proudfoot, R., Pucella, G., Puglia, P., Puiatti, M. E., Pulley, D., Purahoo, K., Pütterich, Th., Rachlew, E., Rack, M., Ragona, R., Rainford, M. S. J., Rakha, A., Ramogida, G., Ranjan, S., Rapson, C. J., Rasmussen, J. J., Rathod, K., Rattá, G., Ratynskaia, S., Ravera, G., Rayner, C., Rebai, M., Reece, D., Reed, A., Réfy, D., Regan, B., Regaña, J., Reich, M., Reid, N., Reimold, F., Reinhart, M., Reinke, M., Reiser, D., Rendell, D., Reux, C., Reyes Cortes, S. D. A., Reynolds, S., Riccardo, V., Richardson, N., Riddle, K., Rigamonti, D., Rimini, F. G., Risner, J., Riva, M., Roach, C., Robins, R. J., Robinson, S. A., Robinson, T., Robson, D. W., Roccella, R., Rodionov, R., Rodrigues, P., Rodriguez, J., Rohde, V., Romanelli, F., Romanelli, M., Romanelli, S., Romazanov, J., Rowe, S., Rubel, M., Rubinacci, G., Rubino, G., Ruchko, L., Ruiz, M., Ruset, C., Rzadkiewicz, J., Saarelma, S., Sabot, R., Safi, E., Sagar, P., Saibene, G., Saint-Laurent, F., Salewski, M., Salmi, A., Salmon, R., Salzedas, F., Samaddar, D., Samm, U., Sandiford, D., Santa, P., Santala, M. I. K., Santos, B., Santucci, A., Sartori, F., Sartori, R., Sauter, O., Scannell, R., Schlummer, T., Schmid, K., Schmidt, V., Schmuck, S., Schneider, M., Schöpf, K., Schwörer, D., Scott, S. D., Sergienko, G., Sertoli, M., Shabbir, A., Sharapov, S. E., Shaw, A., Shaw, R., Sheikh, H., Shepherd, A., Shevelev, A., Shumack, A., Sias, G., Sibbald, M., Sieglin, B., Silburn, S., Silva, A., Silva, C., Simmons, P. A., Simpson, J., Simpson-Hutchinson, J., Sinha, A., Sipilä, S. K., Sips, A. C. C., Sirén, P., Sirinelli, A., Sjöstrand, H., Skiba, M., Skilton, R., Slabkowska, K., Slade, B., Smith, N., Smith, P. G., Smith, R., Smith, T. J., Smithies, M., Snoj, L., Soare, S., Solano, E. R., Somers, A., Sommariva, C., Sonato, P., Sopplesa, A., Sousa, J., Sozzi, C., Spagnolo, S., Spelzini, T., Spineanu, F., Stables, G., Stamatelatos, I., Stamp, M. F., Staniec, P., Stankūnas, G., Stan-Sion, C., Stead, M. J., Stefanikova, E., Stepanov, I., Stephen, A. V., Stephen, M., Stevens, A., Stevens, B. D., Strachan, J., Strand, P., Strauss, H. R., Ström, P., Stubbs, G., Studholme, W., Subba, F., Summers, H. P., Svensson, J., Świderski, Ł., Szabolics, T., Szawlowski, M., Szepesi, G., Suzuki, T. T., Tál, B., Tala, T., Talbot, A. R., Talebzadeh, S., Taliercio, C., Tamain, P., Tame, C., Tang, W., Tardocchi, M., Taroni, L., Taylor, D., Taylor, K. A., Tegnered, D., Telesca, G., Teplova, N., Terranova, D., Testa, D., Tholerus, E., Thomas, J., Thomas, J. D., Thomas, P., Thompson, A., Thompson, C. -A., Thompson, V. K., Thorne, L., Thornton, A., Thrysøe, A. S., Tigwell, P. A., Tipton, N., Tiseanu, I., Tojo, H., Tokitani, M., Tolias, P., Tomeš, M., Tonner, P., Towndrow, M., Trimble, P., Tripsky, M., Tsalas, M., Tsavalas, P., Tskhakaya jun, D., Turner, I., Turner, M. M., Turnyanskiy, M., Tvalashvili, G., Tyrrell, S. G. J., Uccello, A., Ul-Abidin, Z., Uljanovs, J., Ulyatt, D., Urano, H., Uytdenhouwen, I., Vadgama, A. P., Valcarcel, D., Valentinuzzi, M., Valisa, M., Vallejos Olivares, P., Valovic, M., Van De Mortel, M., Van Eester, D., Van Renterghem, W., van Rooij, G. J., Varje, J., Varoutis, S., Vartanian, S., Vasava, K., Vasilopoulou, T., Vega, J., Verdoolaege, G., Verhoeven, R., Verona, C., Verona Rinati, G., Veshchev, E., Vianello, N., Vicente, J., Viezzer, E., Villari, S., Villone, F., Vincenzi, P., Vinyar, I., Viola, B., Vitins, A., Vizvary, Z., Vlad, M., Voitsekhovitch, I., Vondráček, P., Vora, N., Vu, T., Pires de Sa, W. W., Wakeling, B., Waldon, C. W. F., Walkden, N., Walker, M., Walker, R., Walsh, M., Wang, E., Wang, N., Warder, S., Warren, R. J., Waterhouse, J., Watkins, N. W., Watts, C., Wauters, T., Weckmann, A., Weiland, J., Weisen, H., Weiszflog, M., Wellstood, C., West, A. T., Wheatley, M. R., Whetham, S., Whitehead, A. M., Whitehead, B. D., Widdowson, A. M., Wiesen, S., Wilkinson, J., Williams, J., Williams, M., Wilson, A. R., Wilson, D. J., Wilson, H. R., Wilson, J., Wischmeier, M., Withenshaw, G., Withycombe, A., Witts, D. M., Wood, D., Wood, R., Woodley, C., Wray, S., Wright, J., Wright, J. C., Wu, J., Wukitch, S., Wynn, A., Xu, T., Yadikin, D., Yanling, W., Yao, L., Yavorskij, V., Yoo, M. G., Young, C., Young, D., Young, I. D., Young, R., Zacks, J., Zagorski, R., Zaitsev, F. S., Zanino, R., Zarins, A., Zastrow, K. D., Zerbini, M., Zhang, W., Zhou, Y., Zilli, E., Zoita, V., Zoletnik, S., Zychor, I., Andersson Sundén, E., Baiã¡o, D., Belonohy, Ã. ., Bergsã¥ker, H., Bãlkovã¡, P., Bjã¶rkas, C., Bodnã¡r, G., Broså awski, A., Calabrã², G., Crombã©, K., De Castro, A., De La Cal, E., De La Luna, E., De Pablos, J. L., De Vries, P., Den Harder, N., D'Inca, R., Donnã©, T., Duckworth, P. h., Ä uran, I., Durodiã©, F., Eich, T. h., Fã©vrier, O., Gã¡l, K., Gaå azka, K., Galvã¡o, R., GarcÃa-Muñoz, M., Gardarein, J. -. L., Glã¶ggler, S., Goloborod'Ko, V., Goncalves, B., Guã©rard, C., Horã¡ä ek, J., Imrãå¡ek, M., Jã¤rvinen, A., Jednorã³g, S., Kã¶chl, F., Kã¶ppen, M., Kowalska-StrzÈ©ciwilk, E., Ksiaå¼ek, I., Å aszyå ska, E., Linsmeier, C. h., Lã¶nnroth, J., Lã³pez, J. M., López-Razola, J., Maquet, P. h., Markoviä , T., MartÃn De Aguilera, A., Martãnez, F. J., MartÃn-SolÃs, J. R., Mertens, P. h., Mlynã¡å , J., O'Gorman, T., O'Mullane, M., Pehkonen, S. -. P., Perez Von Thun, C., Petrå¾ilka, V., Pfefferlã©, D., Pires Dos Reis, A., Pã¼tterich, T. h., Rattã¡, G., Rã©fy, D., Regaã±a, J., Schã¶pf, K., Schwã¶rer, D., Sipilã¤, S. K., Sirã©n, P., Sjã¶strand, H., Stankå«nas, G., Strã¶m, P., Å widerski, Å. ., Tã¡l, B., Thompson, C. -. A., Thrysã¸e, A. S., Tomeå¡, M., Tskhakaya Jun, D., Van Rooij, G. J., Vondrã¡ä ek, P., Pires De Sa, W. W., Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Hôpital de Rangueil, CHU Toulouse [Toulouse]-CHU Toulouse [Toulouse], Laboratoire de microbiologie et génétique moléculaires (LMGM), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Energia [Milano] (DENG), Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU), Research Centre Julich (FZJ), Institute for Plasma Research, Instituto Superior Tecnico Lisboa, Queen's University Belfast, University of Helsinki, CEA, Department of Applied Physics, School services, SCI, National Institutes for Quantum and Radiological Science and Technology, VTT, University of Naples Federico II, Universidad Nacional de Educacion a Distancia, CNR, Russian Research Centre Kurchatov Institute, Universita degli Studi di Napoli Parthenope, Ente Per Le Nuove Tecnologie L'energia e l'ambiente, Troitsk Institute for Innovation and Fusion Research, Uppsala University, National Institute for Cryogenics and Isotopic Technology, Max-Planck-Institut fur Plasmaphysik, University of Catania, Fusion for Energy Joint Undertaking, National Institutes of Natural Sciences - National Institute for Fusion Science, Massachusetts Institute of Technology, University of Latvia, Imperial College London, CIEMAT, University of Oxford, EUROfusion Programme Management Unit, Oak Ridge National Laboratory, Karlsruhe Institute of Technology KIT, University of York, Royal Institute of Technology, Maritime University of Szczecin, H. Niewodniczanski Institute of Nuclear Physics of the Polish Academy of Sciences, Czech Academy of Sciences, University of Trento, Ecole Polytechnique Federale de Lausanne (EPFL), Wigner Research Centre for Physics, Comenius University, University of Milan - Bicocca, National Institute for Optoelectronics, Fourth State Research, University of Texas at Austin, Belgian Nuclear Research Center, National Centre for Nuclear Research (NCBJ), Princeton University, CNRS, University of Cagliari, University of Warwick, Soltan Institute for Nuclear Studies, FOM Institute DIFFER, National Institute for Laser, Plasma and Radiation Physics, Ghent University, J. Stefan Institute, Universite de Lorraine, CAS - Institute of Plasma Physics, University of California at San Diego, Koninklijke Militaire School - Ecole Royale Militaire, Horia Hulubei National Institute of Physics and Nuclear Engineering, Chalmers University of Technology, School services, ELEC, Department of Signal Processing and Acoustics, Automaatio- ja systeemitekniik, Universidad Politecnica de Madrid, Second University of Naples, Warsaw University of Technology, Universita della Basilicata, Barcelona Supercomp. Center, Universidad de Sevilla, Centro Brasileiro de Pesquisas Fisicas, Department of Electrical Engineering and Automation, Sähkötekniikan laitos, University of Rome Tor Vergata, RAS - Ioffe Physico Technical Institute, General Atomics, University of Innsbruck, Fusion and Plasma Physics, University of Toyama, University of Strathclyde, National Technical University of Athens, Universita della Tuscia, Technical University of Denmark, Korea Advanced Institute of Science and Technology, Seoul National University, University College Cork, Vienna University of Technology, University of Opole, Daegu University, National Fusion Research Institute, Dublin City University, Universidad Politécnica de Madrid, PELIN LLC, Arizona State University, Universidad Complutense, University of Basel, Universidad Carlos III de Madrid, Consorzio CREATE, Demokritos National Centre for Scientific Research, Purdue University, Universite Libre de Bruxelles, School Services, ARTS, Department of Design, University of California Office of the President, Universidade de Sao Paulo, School Services, BIZ, Department of Information and Service Management, Lithuanian Energy Institute, HRS Fusion, Politecnico di Torino, University of Cassino, University of Electronic Science and Technology of China, Department of Electronics and Nanoengineering, Aalto-yliopisto, Aalto University, and Faculdade de Engenharia
- Subjects
Technology ,fusion ,Física [Ciências exactas e naturais] ,Tokamak ,Nuclear engineering ,DIAGNOSTICS ,01 natural sciences ,ILW ,010305 fluids & plasmas ,law.invention ,Ilw ,[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] ,Plasma ,H-Mode Plasmas ,law ,ITER ,Disruption Prediction ,COLLISIONALITY ,EDGE LOCALIZED MODES ,Diagnostics ,Operation ,JET ,plasma ,Nuclear and High Energy Physics ,Condensed Matter Physics ,Physics ,Jet (fluid) ,JET, plasma, fusion, ITER ,Divertor ,Settore FIS/01 - Fisica Sperimentale ,Fusion, Plasma and Space Physics ,DENSITY PEAKING ,Carbon Wall ,H-MODE PLASMAS ,[ SPI.MECA.MEFL ] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] ,Density Peaking ,Neutron transport ,Facing Components ,Collisionality ,114 Physical sciences ,Física, Física ,Nuclear physics ,Physical sciences [Natural sciences] ,Fusion, plasma och rymdfysik ,Pedestal ,0103 physical sciences ,Nuclear fusion ,ddc:530 ,Neutron ,010306 general physics ,Fusion ,Physics, Physical sciences ,Nuclear and High Energy Physic ,Edge Localized Modes ,QC717 ,Física [Àrees temàtiques de la UPC] ,Reactors de fusió ,Física ,FACING COMPONENTS ,Fusion reactors ,Jet ,CARBON WALL ,DISRUPTION PREDICTION ,OPERATION ,ddc:600 - Abstract
The 2014–2016 JET results are reviewed in the light of their significance for optimising the ITER research plan for the active and non-active operation. More than 60 h of plasma operation with ITER first wall materials successfully took place since its installation in 2011. New multi-machine scaling of the type I-ELM divertor energy flux density to ITER is supported by first principle modelling. ITER relevant disruption experiments and first principle modelling are reported with a set of three disruption mitigation valves mimicking the ITER setup. Insights of the L–H power threshold in Deuterium and Hydrogen are given, stressing the importance of the magnetic configurations and the recent measurements of fine-scale structures in the edge radial electric. Dimensionless scans of the core and pedestal confinement provide new information to elucidate the importance of the first wall material on the fusion performance. H-mode plasmas at ITER triangularity (H = 1 at ßN ~ 1.8 and n/nGW ~ 0.6) have been sustained at 2 MA during 5 s. The ITER neutronics codes have been validated on high performance experiments. Prospects for the coming D–T campaign and 14 MeV neutron calibration strategy are reviewed. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under grant agreement No 633053. Peer Reviewed Article signat per 1.173 autors/es: X. Litaudon35, S. Abduallev39, M. Abhangi46, P. Abreu53, M. Afzal7, K.M. Aggarwal29, T. Ahlgren101, J.H. Ahn8, L. Aho-Mantila112, N. Aiba69, M. Airila112, R. Albanese105, V. Aldred7, D. Alegre93, E. Alessi45, P. Aleynikov55, A. Alfier12, A. Alkseev72, M. Allinson7, B. Alper7, E. Alves53, G. Ambrosino105, R. Ambrosino106, L. Amicucci90, V. Amosov88, E. Andersson Sundén22, M. Angelone90, M. Anghel85, C. Angioni62, L. Appel7, C. Appelbee7, P. Arena30, M. Ariola106, H. Arnichand8, S. Arshad41, A. Ash7, N. Ashikawa68, V. Aslanyan64, O. Asunta1, F. Auriemma12, Y. Austin7, L. Avotina103, M.D. Axton7, C. Ayres7, M. Bacharis24, A. Baciero57, D. Baião53, S. Bailey7, A. Baker7, I. Balboa7, M. Balden62, N. Balshaw7, R. Bament7, J.W. Banks7, Y.F. Baranov7, M.A. Barnard7, D. Barnes7, M. Barnes27, R. Barnsley55, A. Baron Wiechec7, L. Barrera Orte34, M. Baruzzo12, V. Basiuk8, M. Bassan55, R. Bastow7, A. Batista53, P. Batistoni90, R. Baughan7, B. Bauvir55, L. Baylor73, B. Bazylev56, J. Beal110, P.S. Beaumont7, M. Beckers39, B. Beckett7, A. Becoulet8, N. Bekris35, M. Beldishevski7, K. Bell7, F. Belli90, M. Bellinger7, É. Belonohy62, N. Ben Ayed7, N.A. Benterman7, H. Bergsåker42, J. Bernardo53, M. Bernert62, M. Berry7, L. Bertalot55, C. Besliu7, M. Beurskens63, B. Bieg61, J. Bielecki47, T. Biewer73, M. Bigi12, P. Bílková50, F. Binda22, A. Bisoffi31, J.P.S. Bizarro53, C. Björkas101, J. Blackburn7, K. Blackman7, T.R. Blackman7, P. Blanchard33, P. Blatchford7, V. Bobkov62, A. Boboc7, G. Bodnár113, O. Bogar18, I. Bolshakova60, T. Bolzonella12, N. Bonanomi97, F. Bonelli56, J. Boom62, J. Booth7, D. Borba35,53, D. Borodin39, I. Borodkina39, A. Botrugno90, C. Bottereau8, P. Boulting7, C. Bourdelle8, M. Bowden7, C. Bower7, C. Bowman110, T. Boyce7, C. Boyd7, H.J. Boyer7, J.M.A. Bradshaw7, V. Braic87, R. Bravanec40, B. Breizman107, S. Bremond8, P.D. Brennan7, S. Breton8, A. Brett7, S. Brezinsek39, M.D.J. Bright7, M. Brix7, W. Broeckx78, M. Brombin12, A. Brosławski65, D.P.D. Brown7, M. Brown7, E. Bruno55, J. Bucalossi8, J. Buch46, J. Buchanan7, M.A. Buckley7, R. Budny76, H. Bufferand8, M. Bulman7, N. Bulmer7, P. Bunting7, P. Buratti90, A. Burckhart62, A. Buscarino30, A. Busse7, N.K. Butler7, I. Bykov42, J. Byrne7, P. Cahyna50, G. Calabrò90, I. Calvo57, Y. Camenen4, P. Camp7, D.C. Campling7, J. Cane7, B. Cannas17, A.J. Capel7, P.J. Card7, A. Cardinali90, P. Carman7, M. Carr7, D. Carralero62, L. Carraro12, B.B. Carvalho53, I. Carvalho53, P. Carvalho53, F.J. Casson7, C. Castaldo90, N. Catarino53, J. Caumont7, F. Causa90, R. Cavazzana12, K. Cave-Ayland7, M. Cavinato12, M. Cecconello22, S. Ceccuzzi90, E. Cecil76, A. Cenedese12, R. Cesario90, C.D. Challis7, M. Chandler7, D. Chandra46, C.S. Chang76, A. Chankin62, I.T. Chapman7, S.C. Chapman28, M. Chernyshova49, G. Chitarin12, G. Ciraolo8, D. Ciric7, J. Citrin38, F. Clairet8, E. Clark7, M. Clark7, R. Clarkson7, D. Clatworthy7, C. Clements7, M. Cleverly7, J.P. Coad7, P.A. Coates7, A. Cobalt7, V. Coccorese105, V. Cocilovo90, S. Coda33, R. Coelho53, J.W. Coenen39, I. Coffey29, L. Colas8, S. Collins7, D. Conka103, S. Conroy22, N. Conway7, D. Coombs7, D. Cooper7, S.R. Cooper7, C. Corradino30, Y. Corre8, G. Corrigan7, S. Cortes53, D. Coster62, A.S. Couchman7, M.P. Cox7, T. Craciunescu86, S. Cramp7, R. Craven7, F. Crisanti90, G. Croci97, D. Croft7, K. Crombé15, R. Crowe7, N. Cruz53, G. Cseh113, A. Cufar81, A. Cullen7, M. Curuia85, A. Czarnecka49, H. Dabirikhah7, P. Dalgliesh7, S. Dalley7, J. Dankowski47, D. Darrow76, O. Davies7, W. Davis55,76, C. Day56, I.E. Day7, M. De Bock55, A. de Castro57, E. de la Cal57, E. de la Luna57, G. De Masi12, J. L. de Pablos57, G. De Temmerman55, G. De Tommasi105, P. de Vries55, K. Deakin7, J. Deane7, F. Degli Agostini12, R. Dejarnac50, E. Delabie73, N. den Harder38, R.O. Dendy7, J. Denis8, P. Denner39, S. Devaux62,104, P. Devynck8, F. Di Maio55, A. Di Siena62, C. Di Troia90, P. Dinca86, R. D’Inca62, B. Ding51, T. Dittmar39, H. Doerk62, R.P. Doerner9, T. Donné34, S.E. Dorling7, S. Dormido-Canto93, S. Doswon7, D. Douai8, P.T. Doyle7, A. Drenik62,81, P. Drewelow63, P. Drews39, Ph. Duckworth55, R. Dumont8, P. Dumortier58, D. Dunai113, M. Dunne62, I. Ďuran50, F. Durodié58, P. Dutta46, B. P. Duval33, R. Dux62, K. Dylst78, N. Dzysiuk22, P.V. Edappala46, J. Edmond7, A.M. Edwards7, J. Edwards7, Th. Eich62, A. Ekedahl8, R. El-Jorf7, C.G. Elsmore7, M. Enachescu84, G. Ericsson22, F. Eriksson16, J. Eriksson22, L.G. Eriksson36, B. Esposito90, S. Esquembri94, H.G. Esser39, D. Esteve8, B. Evans7, G.E. Evans7, G. Evison7, G.D. Ewart7, D. Fagan7, M. Faitsch62, D. Falie86, A. Fanni17, A. Fasoli33, J. M. Faustin33, N. Fawlk7, L. Fazendeiro53, N. Fedorczak8, R.C. Felton7, K. Fenton7, A. Fernades53, H. Fernandes53, J. Ferreira53, J.A. Fessey7, O. Février8, O. Ficker50, A. Field7, S. Fietz62, A. Figueiredo53, J. Figueiredo53,35, A. Fil8, P. Finburg7, M. Firdaouss8, U. Fischer56, L. Fittill7, M. Fitzgerald7, D. Flammini90, J. Flanagan7, C. Fleming7, K. Flinders7, N. Fonnesu90, J. M. Fontdecaba57, A. Formisano79, L. Forsythe7, L. Fortuna30, E. Fortuna-Zalesna19, M. Fortune7, S. Foster7, T. Franke34, T. Franklin7, M. Frasca30, L. Frassinetti42, M. Freisinger39, R. Fresa98, D. Frigione90, V. Fuchs50, D. Fuller35, S. Futatani6, J. Fyvie7, K. Gál34,62, D. Galassi2, K. Gałązka49, J. Galdon-Quiroga92, J. Gallagher7, D. Gallart6, R. Galvão10, X. Gao51, Y. Gao39, J. Garcia8, A. Garcia-Carrasco42, M. García-Muñoz92, J.-L. Gardarein3, L. Garzotti7, P. Gaudio95, E. Gauthier8, D.F. Gear7, S.J. Gee7, B. Geiger62, M. Gelfusa95, S. Gerasimov7, G. Gervasini45, M. Gethins7, Z. Ghani7, M. Ghate46, M. Gherendi86, J.C. Giacalone8, L. Giacomelli45, C.S. Gibson7, T. Giegerich56, C. Gil8, L. Gil53, S. Gilligan7, D. Gin54, E. Giovannozzi90, J.B. Girardo8, C. Giroud7, G. Giruzzi8, S. Glöggler62, J. Godwin7, J. Goff7, P. Gohil43, V. Goloborod’ko102, R. Gomes53, B. Gonçalves53, M. Goniche8, M. Goodliffe7, A. Goodyear7, G. Gorini97, M. Gosk65, R. Goulding76, A. Goussarov78, R. Gowland7, B. Graham7, M.E. Graham7, J. P. Graves33, N. Grazier7, P. Grazier7, N.R. Green7, H. Greuner62, B. Grierson76, F.S. Griph7, C. Grisolia8, D. Grist7, M. Groth1, R. Grove73, C.N. Grundy7, J. Grzonka19, D. Guard7, C. Guérard34, C. Guillemaut8,53, R. Guirlet8, C. Gurl7, H.H. Utoh69, L.J. Hackett7, S. Hacquin8,35, A. Hagar7, R. Hager76, A. Hakola112, M. Halitovs103, S.J. Hall7, S.P. Hallworth Cook7, C. Hamlyn-Harris7, K. Hammond7, C. Harrington7, J. Harrison7, D. Harting7, F. Hasenbeck39, Y. Hatano108, D.R. Hatch107, T.D.V. Haupt7, J. Hawes7, N.C. Hawkes7, J. Hawkins7, P. Hawkins7, P.W. Haydon7, N. Hayter7, S. Hazel7, P.J.L. Heesterman7, K. Heinola101, C. Hellesen22, T. Hellsten42, W. Helou8, O.N. Hemming7, T.C. Hender7, M. Henderson55, S.S. Henderson21, R. Henriques53, D. Hepple7, G. Hermon7, P. Hertout8, C. Hidalgo57, E.G. Highcock27, M. Hill7, J. Hillairet8, J. Hillesheim7, D. Hillis73, K. Hizanidis70, A. Hjalmarsson22, J. Hobirk62, E. Hodille8, C.H.A. Hogben7, G.M.D. Hogeweij38, A. Hollingsworth7, S. Hollis7, D.A. Homfray7, J. Horáček50, G. Hornung15, A.R. Horton7, L.D. Horton36, L. Horvath110, S.P. Hotchin7, M.R. Hough7, P.J. Howarth7, A. Hubbard64, A. Huber39, V. Huber39, T.M. Huddleston7, M. Hughes7, G.T.A. Huijsmans55, C.L. Hunter7, P. Huynh8, A.M. Hynes7, D. Iglesias7, N. Imazawa69, F. Imbeaux8, M. Imríšek50, M. Incelli109, P. Innocente12, M. Irishkin8, I. Ivanova-Stanik49, S. Jachmich58,35, A.S. Jacobsen83, P. Jacquet7, J. Jansons103, A. Jardin8, A. Järvinen1, F. Jaulmes38, S. Jednoróg49, I. Jenkins7, C. Jeong20, I. Jepu86, E. Joffrin8, R. Johnson7, T. Johnson42, Jane Johnston7, L. Joita7, G. Jones7, T.T.C. Jones7, K.K. Hoshino69, A. Kallenbach62, K. Kamiya69, J. Kaniewski7, A. Kantor7, A. Kappatou62, J. Karhunen1, D. Karkinsky7, I. Karnowska7, M. Kaufman73, G. Kaveney7, Y. Kazakov58, V. Kazantzidis70, D.L. Keeling7, T. Keenan7, J. Keep7, M. Kempenaars7, C. Kennedy7, D. Kenny7, J. Kent7, O.N. Kent7, E. Khilkevich54, H.T. Kim35, H.S. Kim80, A. Kinch7, C. king7, D. King7, R.F. King7, D.J. Kinna7, V. Kiptily7, A. Kirk7, K. Kirov7, A. Kirschner39, G. Kizane103, C. Klepper73, A. Klix56, P. Knight7, S.J. Knipe7, S. Knott96, T. Kobuchi69, F. Köchl111, G. Kocsis113, I. Kodeli81, L. Kogan7, D. Kogut8, S. Koivuranta112, Y. Kominis70, M. Köppen39, B. Kos81, T. Koskela1, H.R. Koslowski39, M. Koubiti4, M. Kovari7, E. Kowalska-Strzęciwilk49, A. Krasilnikov88, V. Krasilnikov88, N. Krawczyk49, M. Kresina8, K. Krieger62, A. Krivska58, U. Kruezi7, I. Książek48, A. Kukushkin72, A. Kundu46, T. Kurki-Suonio1, S. Kwak20, R. Kwiatkowski65, O.J. Kwon13, L. Laguardia45, A. Lahtinen101, A. Laing7, N. Lam7, H.T. Lambertz39, C. Lane7, P.T. Lang62, S. Lanthaler33, J. Lapins103, A. Lasa101, J.R. Last7, E. Łaszyńska49, R. Lawless7, A. Lawson7, K.D. Lawson7, A. Lazaros70, E. Lazzaro45, J. Leddy110, S. Lee66, X. Lefebvre7, H.J. Leggate32, J. Lehmann7, M. Lehnen55, D. Leichtle41, P. Leichuer7, F. Leipold55,83, I. Lengar81, M. Lennholm36, E. Lerche58, A. Lescinskis103, S. Lesnoj7, E. Letellier7, M. Leyland110, W. Leysen78, L. Li39, Y. Liang39, J. Likonen112, J. Linke39, Ch. Linsmeier39, B. Lipschultz110, G. Liu55, Y. Liu51, V.P. Lo Schiavo105, T. Loarer8, A. Loarte55, R.C. Lobel7, B. Lomanowski1, P.J. Lomas7, J. Lönnroth1,35, J. M. López94, J. López-Razola57, R. Lorenzini12, U. Losada57, J.J. Lovell7, A.B. Loving7, C. Lowry36, T. Luce43, R.M.A. Lucock7, A. Lukin74, C. Luna5, M. Lungaroni95, C.P. Lungu86, M. Lungu86, A. Lunniss110, I. Lupelli7, A. Lyssoivan58, N. Macdonald7, P. Macheta7, K. Maczewa7, B. Magesh46, P. Maget8, C. Maggi7, H. Maier62, J. Mailloux7, T. Makkonen1, R. Makwana46, A. Malaquias53, A. Malizia95, P. Manas4, A. Manning7, M.E. Manso53, P. Mantica45, M. Mantsinen6, A. Manzanares91, Ph. Maquet55, Y. Marandet4, N. Marcenko88, C. Marchetto45, O. Marchuk39, M. Marinelli95, M. Marinucci90, T. Markovič50, D. Marocco90, L. Marot26, C.A. Marren7, R. Marshal7, A. Martin7, Y. Martin33, A. Martín de Aguilera57, F.J. Martínez93, J. R. Martín-Solís14, Y. Martynova39, S. Maruyama55, A. Masiello12, M. Maslov7, S. Matejcik18, M. Mattei79, G.F. Matthews7, F. Maviglia11, M. Mayer62, M.L. Mayoral34, T. May-Smith7, D. Mazon8, C. Mazzotta90, R. McAdams7, P.J. McCarthy96, K.G. McClements7, O. McCormack12, P.A. McCullen7, D. McDonald34, S. McIntosh7, R. McKean7, J. McKehon7, R.C. Meadows7, A. Meakins7, F. Medina57, M. Medland7, S. Medley7, S. Meigh7, A.G. Meigs7, G. Meisl62, S. Meitner73, L. Meneses53, S. Menmuir7,42, K. Mergia71, I.R. Merrigan7, Ph. Mertens39, S. Meshchaninov88, A. Messiaen58, H. Meyer7, S. Mianowski65, R. Michling55, D. Middleton-Gear7, J. Miettunen1, F. Militello7, E. Militello-Asp7, G. Miloshevsky77, F. Mink62, S. Minucci105, Y. Miyoshi69, J. Mlynář50, D. Molina8, I. Monakhov7, M. Moneti109, R. Mooney7, S. Moradi37, S. Mordijck43, L. Moreira7, R. Moreno57, F. Moro90, A.W. Morris7, J. Morris7, L. Moser26, S. Mosher73, D. Moulton7,1, A. Murari12,35, A. Muraro45, S. Murphy7, N.N. Asakura69, Y.S. Na80, F. Nabais53, R. Naish7, T. Nakano69, E. Nardon8, V. Naulin83, M.F.F. Nave53, I. Nedzelski53, G. Nemtsev88, F. Nespoli33, A. Neto41, R. Neu62, V.S. Neverov72, M. Newman7, K.J. Nicholls7, T. Nicolas33, A.H. Nielsen83, P. Nielsen12, E. Nilsson8, D. Nishijima99, C. Noble7, M. Nocente97, D. Nodwell7, K. Nordlund101, H. Nordman16, R. Nouailletas8, I. Nunes53, M. Oberkofler62, T. Odupitan7, M.T. Ogawa69, T. O’Gorman7, M. Okabayashi76, R. Olney7, O. Omolayo7, M. O’Mullane21, J. Ongena58, F. Orsitto11, J. Orszagh18, B.I. Oswuigwe7, R. Otin7, A. Owen7, R. Paccagnella12, N. Pace7, D. Pacella90, L.W. Packer7, A. Page7, E. Pajuste103, S. Palazzo30, S. Pamela7, S. Panja46, P. Papp18, R. Paprok50, V. Parail7, M. Park66, F. Parra Diaz27, M. Parsons73, R. Pasqualotto12, A. Patel7, S. Pathak46, D. Paton7, H. Patten33, A. Pau17, E. Pawelec48, C. Paz Soldan43, A. Peackoc36, I.J. Pearson7, S.-P. Pehkonen112, E. Peluso95, C. Penot55, A. Pereira57, R. Pereira53, P.P. Pereira Puglia7, C. Perez von Thun35,39, S. Peruzzo12, S. Peschanyi56, M. Peterka50, P. Petersson42, G. Petravich113, A. Petre84, N. Petrella7, V. Petržilka50, Y. Peysson8, D. Pfefferlé33, V. Philipps39, M. Pillon90, G. Pintsuk39, P. Piovesan12, A. Pires dos Reis52, L. Piron7, A. Pironti105, F. Pisano17, R. Pitts55, F. Pizzo79, V. Plyusnin53, N. Pomaro12, O.G. Pompilian86, P.J. Pool7, S. Popovichev7, M.T. Porfiri90, C. Porosnicu86, M. Porton7, G. Possnert22, S. Potzel62, T. Powell7, J. Pozzi7, V. Prajapati46, R. Prakash46, G. Prestopino95, D. Price7, M. Price7, R. Price7, P. Prior7, R. Proudfoot7, G. Pucella90, P. Puglia52, M.E. Puiatti12, D. Pulley7, K. Purahoo7, Th. Pütterich62, E. Rachlew25, M. Rack39, R. Ragona58, M.S.J. Rainford7, A. Rakha6, G. Ramogida90, S. Ranjan46, C.J. Rapson62, J.J. Rasmussen83, K. Rathod46, G. Rattá57, S. Ratynskaia82, G. Ravera90, C. Rayner7, M. Rebai97, D. Reece7, A. Reed7, D. Réfy113, B. Regan7, J. Regaña34, M. Reich62, N. Reid7, F. Reimold39, M. Reinhart34, M. Reinke110,73, D. Reiser39, D. Rendell7, C. Reux8, S.D.A. Reyes Cortes53, S. Reynolds7, V. Riccardo7, N. Richardson7, K. Riddle7, D. Rigamonti97, F.G. Rimini7, J. Risner73, M. Riva90, C. Roach7, R.J. Robins7, S.A. Robinson7, T. Robinson7, D.W. Robson7, R. Roccella55, R. Rodionov88, P. Rodrigues53, J. Rodriguez7, V. Rohde62, F. Romanelli90, M. Romanelli7, S. Romanelli7, J. Romazanov39, S. Rowe7, M. Rubel42, G. Rubinacci105, G. Rubino12, L. Ruchko52, M. Ruiz94, C. Ruset86, J. Rzadkiewicz65, S. Saarelma7, R. Sabot8, E. Safi101, P. Sagar7, G. Saibene41, F. Saint-Laurent8, M. Salewski83, A. Salmi112, R. Salmon7, F. Salzedas53, D. Samaddar7, U. Samm39, D. Sandiford7, P. Santa46, M.I.K. Santala1, B. Santos53, A. Santucci90, F. Sartori41, R. Sartori41, O. Sauter33, R. Scannell7, T. Schlummer39, K. Schmid62, V. Schmidt12, S. Schmuck7, M. Schneider8, K. Schöpf102, D. Schwörer32, S.D. Scott76, G. Sergienko39, M. Sertoli62, A. Shabbir15, S.E. Sharapov7, A. Shaw7, R. Shaw7, H. Sheikh7, A. Shepherd7, A. Shevelev54, A. Shumack38, G. Sias17, M. Sibbald7, B. Sieglin62, S. Silburn7, A. Silva53, C. Silva53, P.A. Simmons7, J. Simpson7, J. Simpson-Hutchinson7, A. Sinha46, S.K. Sipilä1, A.C.C. Sips36, P. Sirén112, A. Sirinelli55, H. Sjöstrand22, M. Skiba22, R. Skilton7, K. Slabkowska49, B. Slade7, N. Smith7, P.G. Smith7, R. Smith7, T.J. Smith7, M. Smithies110, L. Snoj81, S. Soare85, E. R. Solano35,57, A. Somers32, C. Sommariva8, P. Sonato12, A. Sopplesa12, J. Sousa53, C. Sozzi45, S. Spagnolo12, T. Spelzini7, F. Spineanu86, G. Stables7, I. Stamatelatos71, M.F. Stamp7, P. Staniec7, G. Stankūnas59, C. Stan-Sion84, M.J. Stead7, E. Stefanikova42, I. Stepanov58, A.V. Stephen7, M. Stephen46, A. Stevens7, B.D. Stevens7, J. Strachan76, P. Strand16, H.R. Strauss44, P. Ström42, G. Stubbs7, W. Studholme7, F. Subba75, H.P. Summers21, J. Svensson63, Ł. Świderski65, T. Szabolics113, M. Szawlowski49, G. Szepesi7, T.T. Suzuki69, B. Tál113, T. Tala112, A.R. Talbot7, S. Talebzadeh95, C. Taliercio12, P. Tamain8, C. Tame7, W. Tang76, M. Tardocchi45, L. Taroni12, D. Taylor7, K.A. Taylor7, D. Tegnered16, G. Telesca15, N. Teplova54, D. Terranova12, D. Testa33, E. Tholerus42, J. Thomas7, J.D. Thomas7, P. Thomas55, A. Thompson7, C.-A. Thompson7, V.K. Thompson7, L. Thorne7, A. Thornton7, A.S. Thrysøe83, P.A. Tigwell7, N. Tipton7, I. Tiseanu86, H. Tojo69, M. Tokitani67, P. Tolias82, M. Tomeš50, P. Tonner7, M. Towndrow7, P. Trimble7, M. Tripsky58, M. Tsalas38, P. Tsavalas71, D. Tskhakaya jun102, I. Turner7, M.M. Turner32, M. Turnyanskiy34, G. Tvalashvili7, S.G.J. Tyrrell7, A. Uccello45, Z. Ul-Abidin7, J. Uljanovs1, D. Ulyatt7, H. Urano69, I. Uytdenhouwen78, A.P. Vadgama7, D. Valcarcel7, M. Valentinuzzi8, M. Valisa12, P. Vallejos Olivares42, M. Valovic7, M. Van De Mortel7, D. Van Eester58, W. Van Renterghem78, G.J. van Rooij38, J. Varje1, S. Varoutis56, S. Vartanian8, K. Vasava46, T. Vasilopoulou71, J. Vega57, G. Verdoolaege58, R. Verhoeven7, C. Verona95, G. Verona Rinati95, E. Veshchev55, N. Vianello45, J. Vicente53, E. Viezzer62,92, S. Villari90, F. Villone100, P. Vincenzi12, I. Vinyar74, B. Viola90, A. Vitins103, Z. Vizvary7, M. Vlad86, I. Voitsekhovitch34, P. Vondráček50, N. Vora7, T. Vu8, W.W. Pires de Sa52, B. Wakeling7, C.W.F. Waldon7, N. Walkden7, M. Walker7, R. Walker7, M. Walsh55, E. Wang39, N. Wang39, S. Warder7, R.J. Warren7, J. Waterhouse7, N.W. Watkins28, C. Watts55, T. Wauters58, A. Weckmann42, J. Weiland23, H. Weisen33, M. Weiszflog22, C. Wellstood7, A.T. West7, M.R. Wheatley7, S. Whetham7, A.M. Whitehead7, B.D. Whitehead7, A.M. Widdowson7, S. Wiesen39, J. Wilkinson7, J. Williams7, M. Williams7, A.R. Wilson7, D.J. Wilson7, H.R. Wilson110, J. Wilson7, M. Wischmeier62, G. Withenshaw7, A. Withycombe7, D.M. Witts7, D. Wood7, R. Wood7, C. Woodley7, S. Wray7, J. Wright7, J.C. Wright64, J. Wu89, S. Wukitch64, A. Wynn110, T. Xu7, D. Yadikin16, W. Yanling39, L. Yao89, V. Yavorskij102, M.G. Yoo80, C. Young7, D. Young7, I.D. Young7, R. Young7, J. Zacks7, R. Zagorski49, F.S. Zaitsev18, R. Zanino75, A. Zarins103, K.D. Zastrow7, M. Zerbini90, W. Zhang62, Y. Zhou42, E. Zilli12, V. Zoita86, S. Zoletnik113, I. Zychor65 and JET Contributorsa // EUROfusion Consortium JET, Culham Science Centre, Abingdon, OX14 3DB, United Kingdom / 1 Aalto University, PO Box 14100, FIN-00076 Aalto, Finland / 2 Aix Marseille Université, CNRS, Centrale Marseille, M2P2 UMR 7340, 13451, Marseille, France / 3 Aix-Marseille Université, CNRS, IUSTI UMR 7343, 13013 Marseille, France / 4 Aix-Marseille Université, CNRS, PIIM, UMR 7345, 13013 Marseille, France / 5 Arizona State University, Tempe, AZ, United States of America / 6 Barcelona Supercomputing Center, Barcelona, Spain / 7 CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, United Kingdom / 8 CEA, IRFM, F-13108 Saint Paul Lez Durance, France / 9 Center for Energy Research, University of California at San Diego, La Jolla, CA 92093, United States of America / 10 Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud, 160, Rio de Janeiro CEP 22290-180, Brazil / 11 Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy / 12 Consorzio RFX, corso Stati Uniti 4, 35127 Padova, Italy / 13 Daegu University, Jillyang, Gyeongsan, Gyeongbuk 712-174, Republic of Korea / 14 Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain / 15 Department of Applied Physics UG (Ghent University) St-Pietersnieuwstraat 41 B-9000 Ghent, Belgium / 16 Department of Earth and Space Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden / 17 Department of Electrical and Electronic Engineering, University of Cagliari, Piazza d’Armi 09123, Cagliari, Italy / 18 Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics Comenius University Mlynska dolina F2, 84248 Bratislava, Slovakia / 19 Department of Materials Science, Warsaw University of Technology, PL-01-152 Warsaw, Poland / 20 Department of Nuclear and Quantum Engineering, KAIST, Daejeon 34141, Korea / 21 Department of Physics and Applied Physics, University of Strathclyde, Glasgow, G4 ONG, United Kingdom / 22 Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala, Sweden / 23 Department of Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden / 24 Department of Physics, Imperial College London, London, SW7 2AZ, United Kingdom / 25 Department of Physics, SCI, KTH, SE-10691 Stockholm, Sweden / 26 Department of Physics, University of Basel, Basel, Switzerland / 27 Department of Physics, University of Oxford, Oxford, OX1 2JD, United Kingdom / 28 Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom / 29 Department of Pure and Applied Physics, Queens University, Belfast, BT7 1NN, United Kingdom / 30 Dipartimento di Ingegneria Elettrica Elettronica e Informatica, Università degli Studi di Catania, 95125 Catania, Italy / 31 Dipartimento di Ingegneria Industriale, University of Trento, Trento, Italy / 32 Dublin City University (DCU), Dublin, Ireland / 33 Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland / 34 EUROfusion Programme Management Unit, Boltzmannstr. 2, 85748 Garching, Germany / 35 EUROfusion Programme Management Unit, Culham Science Centre, Culham, OX14 3DB, United Kingdom / 36 European Commission, B-1049 Brussels, Belgium / 37 Fluid and Plasma Dynamics, ULB—Campus Plaine—CP 231 Boulevard du Triomphe, 1050 Bruxelles, Belgium / 38 FOM Institute DIFFER, Eindhoven, Netherlands / 39 Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung—Plasmaphysik, 52425 Jülich, Germany / 40 Fourth State Research, 503 Lockhart Dr, Austin, TX, United States of America / 41 Fusion for Energy Joint Undertaking, Josep Pl. 2, Torres Diagonal Litoral B3, 08019, Barcelona, Spain / 42 Fusion Plasma Physics, EES, KTH, SE-10044 Stockholm, Sweden / 43 General Atomics, PO Box 85608, San Diego, CA 92186-5608, United States of America / 44 HRS Fusion, West Orange, NJ, United States of America / 45 IFP-CNR, via R. Cozzi 53, 20125 Milano, Italy / 46 Institute for Plasma Research, Bhat, Gandhinagar-382 428, Gujarat State, India / 47 Institute of Nuclear Physics, Radzikowskiego 152, 31-342 Kraków, Poland / 48 Institute of Physics, Opole University, Oleska 48, 45-052 Opole, Poland / 49 Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw, Poland / 50 Institute of Plasma Physics AS CR, Za Slovankou 1782/3, 182 00 Praha 8, Czechia / 51 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China / 52 Instituto de Física, Universidade de São Paulo, Rua do Matão Travessa R Nr.187 CEP 05508-090 Cidade Universitária, São Paulo, Brasil / 53 Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal / 54 Ioffe Physico-Technical Institute, 26 Politekhnicheskaya, St Petersburg 194021, Russian Federation / 55 ITER Organization, Route de Vinon, CS 90 046, 13067 Saint Paul Lez Durance, France / 56 Karlsruhe Institute of Technology, PO Box 3640, D-76021 Karlsruhe, Germany / 57 Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain / 58 Laboratory for Plasma Physics Koninklijke Militaire School—Ecole Royale Militaire, Renaissancelaan 30 Avenue de la Renaissance B-1000, Brussels, Belgium / 59 Lithuanian energy institute, Breslaujos g. 3, LT-44403, Kaunas, Lithuania / 60 Magnetic Sensor Laboratory, Lviv Polytechnic National University, Lviv, Ukraine / 61 Maritime University of Szczecin, Waly Chrobrego 1-2, 70-500 Szczecin, Poland / 62 Max-Planck-Institut für Plasmaphysik, D-85748 Garching, Germany / 63 Max-Planck-Institut für Plasmaphysik, Teilinsitut Greifswald, D-17491 Greifswald, Germany / 64 MIT Plasma Science and Fusion Centre, Cambridge, MA 02139, United States of America / 65 National Centre for Nuclear Research (NCBJ), 05-400 Otwock-Świerk, Poland / 66 National Fusion Research Institute (NFRI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea / 67 National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292, Japan / 68 National Institute for Fusion Science, Toki, 509-5292, Japan / 69 National Institutes for Quantum and Radiological Science and Technology, Naka, Ibaraki 311-0193, Japan / 70 National Technical University of Athens, Iroon Politechniou 9, 157 73 Zografou, Athens, Greece / 71 NCSR ‘Demokritos’, 153 10, Agia Paraskevi Attikis, Greece / 72 NRC Kurchatov Institute, 1 Kurchatov Square, Moscow 123182, Russian Federation / 73 Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169, United States of America / 74 PELIN LLC, 27a, Gzhatskaya Ulitsa, Saint Petersburg, 195220, Russian Federation / 75 Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy / 76 Princeton Plasma Physics Laboratory, James Forrestal Campus, Princeton, NJ 08543, United States of America / 77 Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, United States of America / 78 SCK-CEN, Nuclear Research Centre, 2400 Mol, Belgium / 79 Second University of Napoli, Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy / 80 Seoul National University, Shilim-Dong, Gwanak-Gu, Republic of Korea / 81 Slovenian Fusion Association (SFA), Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia / 82 Space and Plasma Physics, EES, KTH SE-100 44 Stockholm, Sweden / 83 Technical University of Denmark, Department of Physics, Bldg 309, DK-2800 Kgs Lyngby, Denmark / 84 The ‘Horia Hulubei’ National Institute for Physics and Nuclear Engineering, Magurele-Bucharest, Romania / 85 The National Institute for Cryogenics and Isotopic Technology, Ramnicu Valcea, Romania / 86 The National Institute for Laser, Plasma and Radiation Physics, Magurele-Bucharest, Romania / 87 The National Institute for Optoelectronics, Magurele-Bucharest, Romania / 88 Troitsk Insitute of Innovating and Thermonuclear Research (TRINITI), Troitsk 142190, Moscow Region, Russian Federation / 89 University of Electronic Science and Technology of China, Chengdu, People’s Republic of China / 90 Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati (Roma), Italy / 91 Universidad Complutense de Madrid, Madrid, Spain / 92 Universidad de Sevilla, Sevilla, Spain / 93 Universidad Nacional de Educación a Distancia, Madrid, Spain / 94 Universidad Politécnica de Madrid, Grupo I2A2, Madrid, Spain / 95 Università di Roma Tor Vergata, Via del Politecnico 1, Roma, Italy / 96 University College Cork (UCC), Ireland / 97 University Milano-Bicocca, piazza della Scienza 3, 20126 Milano, Italy / 98 University of Basilicata, Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy / 99 University of California, 1111 Franklin St., Oakland, CA 94607, United States of America / 100 University of Cassino, Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy / 101 University of Helsinki, PO Box 43, FI-00014 University of Helsinki, Finland / 102 University of Innsbruck, Fusion@Österreichische Akademie der Wissenschaften (ÖAW), Innsbruck, Austria / 103 University of Latvia, 19 Raina Blvd., Riga, LV 1586, Latvia / 104 University of Lorraine, CNRS, UMR7198, YIJL, Nancy, France / 105 University of Napoli ‘Federico II’, Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy / 106 University of Napoli Parthenope, Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy / 107 University of Texas at Austin, Institute for Fusion Studies, Austin, TX 78712, United States of America / 108 University of Toyama, Toyama, 930-8555, Japan / 109 University of Tuscia, DEIM, Via del Paradiso 47, 01100 Viterbo, Italy / 110 University of York, Heslington, York YO10 5DD, United Kingdom / 111 Vienna University of Technology, Fusion@Österreichische Akademie der Wissenschaften (ÖAW), Austria / 112 VTT Technical Research Centre of Finland, PO Box 1000, FIN-02044 VTT, Finland / 113 Wigner Research Centre for Physics, PO Box 49, H-1525 Budapest, Hungary
- Published
- 2017
- Full Text
- View/download PDF
44. Blob dynamics in the TORPEX experiment: a multi-code validation
- Author
-
Eric Serre, J. Denis, Fabio Riva, Anders Nielsen, Ivo Furno, Christian Theiler, Volker Naulin, Jens Madsen, J. Juul Rasmussen, Luke Easy, Patrick Tamain, C. Colin, Fulvio Militello, Paolo Ricci, Jeppe Olsen, John Omotani, Swiss Plasma Center (SPC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom, Culham Centre for Fusion Energy (CCFE), Danmarks Tekniske Universitet = Technical University of Denmark (DTU), Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU), Department of Physics, Department of Micro- and Nanotechnology, Technical University of Denmark (DTU), Lille économie management - UMR 9221 [LEM], Mines Paris - PSL (École nationale supérieure des mines de Paris), Ecole Polytechnique Fédérale de Lausanne [EPFL], Association EURATOM-Risø National Laboratory, Laboratoire de Mécanique, Modélisation et Procédés Propres [M2P2], Physique des interactions ioniques et moléculaires [PIIM], Lille économie management - LEM - UMR 9221 (LEM), Université de Lille-Université catholique de Lille (UCL)-Centre National de la Recherche Scientifique (CNRS), MINES ParisTech - École nationale supérieure des mines de Paris, aucun, Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Dept. of Physics, University of Wisconsin-Madison, Technical University of Denmark [Lyngby] (DTU), Physique des interactions ioniques et moléculaires (PIIM), and Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Tokamak ,Dynamics (mechanics) ,CRPP_EDGE ,Plasma ,Condensed Matter Physics ,Fluid models ,01 natural sciences ,Stability (probability) ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,010305 fluids & plasmas ,law.invention ,[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] ,Nuclear Energy and Engineering ,law ,Physics::Plasma Physics ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,Multi code ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,Statistical physics ,Torpex ,010306 general physics - Abstract
International audience; Three-dimensional and two-dimensional seeded blob simulations are performed with five different fluid models, all based on the drift-reduced Braginskii equations, and the numerical results are compared among themselves and validated against experimental measurements provided by the TORPEX device ( Fasoli et al 2006 Phys. Plasmas 13 055902). The five models are implemented in four simulation codes, typically used to simulate the plasma dynamics in the tokamak scrape-off layer, namely BOUT++ (Dudson et al 2009 Comput. Phys. Commun. 180 1467), GBS (Ricci et al 2012 Plasma Phys. Control. Fusion 54 124047), HESEL (Nielsen et al 2015 Phys. Lett. A 379 3097), and TOKAM3X (Tamain et al 2014 Contrib. Plasma Phys. 54 555). Three blobs with different velocities and different stability properties are simulated. The differences observed among the simulation results and the different levels of agreement with experimental measurements are investigated, increasing our confidence in our simulation tools and shedding light on the blob dynamics. The comparisons demonstrate that the radial blob dynamics observed in the three-dimensional simulations is in good agreement with experimental measurements and that, in the present experimental scenario, the two-dimensional model derived under the assumption of k(vertical bar vertical bar) = 0 is able to recover the blob dynamics observed in the three-dimensional simulations. Moreover, it is found that an accurate measurement of the blob temperature is important to perform reliable seeded blob simulations.
- Published
- 2016
- Full Text
- View/download PDF
45. Experimental constraint on the radial mode number of the geodesic acoustic mode from multi-point Langmuir probe measurements in MAST Ohmic plasma
- Author
-
A. Kirk, S. Gadgil, Bogdan Hnat, Nick Walkden, and Fulvio Militello
- Subjects
Physics ,Tokamak ,Turbulence ,Plasma ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Computational physics ,symbols.namesake ,Nuclear Energy and Engineering ,Mach number ,Physics::Plasma Physics ,law ,Physics::Space Physics ,0103 physical sciences ,symbols ,Langmuir probe ,Wavenumber ,Electric potential ,Phase velocity ,010306 general physics - Abstract
Reciprocating Mach probe data is used to estimate the radial wave number of oscillatory zonal flows in Ohmic MAST plasma. An intermittent ~10 kHz mode, previously identified as a geodesic acoustic mode (GAM), is detected in the wavelet decomposition and windowed spectra of plasma potential fluctuations of the MAST tokamak edge plasma. Two-points phase differencing technique is then applied to probe pins with radial and poloidal separations giving an estimate of the radial wave number at the desired range of frequencies. The phase velocity of propagation and an estimate of the shearing rate of the GAM is obtained. We measure the radial mode number range k r ≈ 0.3–1.0 cm−1 and a radial propagation speed of up to ~1 km s−1. The GAM shearing rate is an order of magnitude smaller than the growth rate of drift-like turbulence. These results are consistent with the estimates obtained previously from multi-fluid numerical simulations of GAM in MAST.
- Published
- 2018
- Full Text
- View/download PDF
46. L-mode filament characteristics on MAST as a function of plasma current measured using visible imaging
- Author
-
Fulvio Militello, A. Kirk, A.J. Thornton, J. R. Harrison, and Nick Walkden
- Subjects
Tokamak ,Materials science ,Divertor ,FOS: Physical sciences ,Plasma ,Condensed Matter Physics ,01 natural sciences ,Molecular physics ,Physics - Plasma Physics ,010305 fluids & plasmas ,law.invention ,Plasma current ,Radial velocity ,Protein filament ,Plasma Physics (physics.plasm-ph) ,Nuclear Energy and Engineering ,law ,Physics::Plasma Physics ,0103 physical sciences ,Physics::Space Physics ,Visible imaging ,Constant density ,010306 general physics - Abstract
Clear filamentary structures are observed at the edge of tokamak plasmas. These filaments are ejected out radially and carry plasma in the far Scrape Off Layer (SOL) region, where they are responsible for producing most of the transport. A study has been performed of the characteristics of the filaments observed in L-mode plasma on MAST, using visible imaging. A comparison has then been made with the observed particle and power profiles obtained at the divertor as a function of the plasma current. The radial velocity and to a lesser extent the radial size of the filaments are found to decrease as the plasma current is increased at constant density and input power. The results obtained in this paper on the dependence of the average filament dynamics on plasma current are consistent with the idea that the filaments are responsible for determining the particle profiles at the divertor., 24 pages, 17 figures. This is an author-created, un-copyedited version of an article submitted for publication in Plasma Physics and Controlled Fusion. IoP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it
- Published
- 2016
47. Multi-code analysis of scrape-off layer filament dynamics in MAST
- Author
-
Nick Walkden, Luke Easy, Jeppe Olsen, J. Young, T. Farley, Ivan Lupelli, Paolo Ricci, W. A. Gracias, Jens Madsen, Fabio Riva, Patrick Tamain, Anders Nielsen, Fulvio Militello, and Nicolas Fedorczak
- Subjects
Physics ,Tokamak ,Field line ,business.industry ,Perturbation (astronomy) ,Plasma ,CRPP_EDGE ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Computational physics ,Protein filament ,Amplitude ,Optics ,Nuclear Energy and Engineering ,law ,0103 physical sciences ,Perpendicular ,Light emission ,010306 general physics ,business - Abstract
Four numerical codes are employed to investigate the dynamics of scrape-off layer filaments in tokamak relevant conditions. Experimental measurements were taken in the MAST device using visual camera imaging, which allows the evaluation of the perpendicular size and velocity of the filaments, as well as the combination of density and temperature associated with the perturbation. A new algorithm based on the light emission integrated along the field lines associated with the position of the filament is developed to ensure that it is properly detected and tracked. The filaments are found to have velocities of the order of 1 km s(-1), a perpendicular diameter of around 2-3 cm and a density amplitude 2-3.5 times the background plasma. 3D and 2D numerical codes (the STORM module of BOUT++, GBS, HESEL and TOKAM3X) are used to reproduce the motion of the observed filaments with the purpose of validating the codes and of better understanding the experimental data. Good agreement is found between the 3D codes. The seeded filament simulations are also able to reproduce the dynamics observed in experiments with accuracy up to the experimental errorbar levels. In addition, the numerical results showed that filaments characterised by similar size and light emission intensity can have quite different dynamics if the pressure perturbation is distributed differently between density and temperature components. As an additional benefit, several observations on the dynamics of the filaments in the presence of evolving temperature fields were made and led to a better understanding of the behaviour of these coherent structures.
- Published
- 2016
- Full Text
- View/download PDF
48. Scrape Off Layer profiles interpreted with filament dynamics
- Author
-
John Omotani and Fulvio Militello
- Subjects
Nuclear and High Energy Physics ,Materials science ,Dynamics (mechanics) ,FOS: Physical sciences ,Mechanics ,Condensed Matter Physics ,01 natural sciences ,Physics - Plasma Physics ,Flattening ,010305 fluids & plasmas ,Protein filament ,Plasma Physics (physics.plasm-ph) ,Amplitude ,Physics::Plasma Physics ,0103 physical sciences ,010306 general physics ,Layer (electronics) - Abstract
A theoretical framework is developed to link the density profiles in the Scrape Off Layer (SOL) with the fluctuations (filaments) that generate them. The framework is based on the dynamics of independent filaments and their statistical behaviour and can be used to rigorously understand the mechanisms that lead to flattening and broadening of the SOL profiles as well as the radial increase of the relative fluctuation amplitude., Comment: 12 pages, 1 figure
- Published
- 2016
- Full Text
- View/download PDF
49. Investigation of the Effect of Resistivity on Scrape Off Layer Filaments using Three Dimensional Simulations
- Author
-
John Omotani, Nick Walkden, Fulvio Militello, Benjamin Daniel Dudson, and Luke Easy
- Subjects
Materials science ,Tokamak ,Condensed matter physics ,FOS: Physical sciences ,Plasma ,macromolecular substances ,Condensed Matter Physics ,Polarization (waves) ,Thermal conduction ,01 natural sciences ,Physics - Plasma Physics ,010305 fluids & plasmas ,law.invention ,Plasma Physics (physics.plasm-ph) ,Protein filament ,Potential difference ,Electrical resistivity and conductivity ,law ,0103 physical sciences ,Perpendicular ,010306 general physics - Abstract
The propagation of filaments in the Scrape Off Layer (SOL) of tokamaks largely determine the plasma profiles in the region. In a conduction limited SOL, parallel temperature gradients are expected, such that the resistance to parallel currents is greater at the target than further upstream. Since the perpendicular motion of an isolated filament is largely determined by balance of currents that flow through it, this may be expected to affect filament transport. 3D simulations have thus been used to study the influence of enhanced parallel resistivity on the dynamics of filaments. Filaments with the smallest perpendicular length scales, which were inertially limited at low resistivity (meaning that polarization rather than parallel currents determine their radial velocities), were unaffected by resistivity. For larger filaments, faster velocities were produced at higher resistivities, due to two mechanisms. Firstly parallel currents were reduced and polarization currents were enhanced, meaning that the inertial regime extended to larger filaments, and secondly a potential difference formed along the parallel direction so that higher potentials were produced in the region of the filament for the same amount of current to flow into the sheath. These results indicate that broader SOL profiles could be produced at higher resistivities., 14 Pages, 15 Figures
- Published
- 2015
50. L to H mode transition: parametric dependencies of the temperature threshold
- Author
-
Alexander Lukin, Stefan Matejcik, Soare Sorin, Francesco Romanelli, Emilio Blanco, Ephrem Delabie, Guilhem Dif-Pradalier, Bohdan Bieg, Fulvio Militello, Vladislav Plyusnin, José Vicente, Alberto Loarte, Rajnikant Makwana, CHIARA MARCHETTO, Marco Wischmeier, Choong-Seock Chang, Aneta Gójska, Laurent Chôné, Manuel Garcia-munoz, Laure Vermare, Universidad de Sevilla. Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla. RNM138: Física Nuclear Aplicada, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Dutch Institute for Fundamental Energy Research [Nieuwegein] (DIFFER), Joint European Torus (JET-EFDA), Culham Science Centre [Abingdon], and Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)
- Subjects
Physics ,[PHYS]Physics [physics] ,Nuclear and High Energy Physics ,Tokamak ,Condensed matter physics ,Turbulence ,Plasma ,Electron ,Collisionality ,Condensed Matter Physics ,01 natural sciences ,Effective nuclear charge ,010305 fluids & plasmas ,Magnetic field ,law.invention ,Plasma physics ,law ,Electric field ,0103 physical sciences ,L H transition ,Atomic physics ,010306 general physics - Abstract
International audience; The L to H mode transition occurs at a critical power which depends on ă various parameters, such as the magnetic field, the density, etc. ă Experimental evidence on various tokamaks (JET, ASDEX-Upgrade, DIII-D, ă Alcator C-Mod) points towards the existence of a critical temperature ă characterizing the transition. This criterion for the L-H transition is ă local and is therefore easier to be compared to theoretical approaches. ă In order to shed light on the mechanisms of the transition, simple ă theoretical ideas are used to derive a temperature threshold (T-th). ă They are based on the stabilization of the underlying turbulence by a ă mean radial electric field shear. The nature of the turbulence varies as ă the collisionality decreases, from resistive ballooning modes to ion ă temperature gradient and trapped electron modes. The obtained parametric ă dependencies of the derived T-th are tested versus magnetic field, ă density, effective charge. Various robust experimental observations are ă reproduced, in particular T-th increases with magnetic field B and ă increases with density below the density roll-over observed on the power ă threshold.
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.