Back to Search
Start Over
The role of edge plasma parameters in H-mode density limit on the JET-ILW
- Source :
- Nuclear fusion 61(6), 066009-(2021). doi:10.1088/1741-4326/abf056
- Publication Year :
- 2021
- Publisher :
- IAEA, 2021.
-
Abstract
- A study of a dataset of JET H-mode plasma with the Be/W ITER-like wall (JET-ILW) shows that reaching the edge MHD ballooning limit leads to confinement degradation. However, unlike JET plasmas with a carbon wall (JET-C), the JET-ILW plasmas stay in a marginal dithering phase for a relatively long period, associated with a higher (≈20%) H-mode density limit (HDL) than JET-C equivalents. This suggests that ITER could be operated in H-mode with higher density than the scaling based on carbon wall devices, but likely with a dithering phase plasma with lower confinement. A new, reliable estimator for JET E r, min has been derived by combining HRTS measurements of pedestal gradient and edge-SOL decay lengths. JET radial E r ETB wells are observed in the range of −15 to −60 kV m−1 in high performance H-modes, consistent with previous CXRS results in ASDEX Upgrade. The results imply that a higher positive E × B shear in the near SOL plays a role in sustaining a marginal phase in JET-ILW which leads to a higher HDL than that in JET-C. The results of the JET-ILW dataset show agreement with the Goldston finite collisionality HD model for SOL broadening at high collisionality. A hypothesis for the dithering H-mode phase is proposed: as n e,SOL increases, ν ∗,SOL increases, SOL broadens, E r shear decreases, triggers L-mode; n e drops, ν ∗,SOL decreases, SOL becomes narrower, and E r shear increases, triggering H-mode, resulting in a cycle of H–L–H- oscillations. For burning plasma devices, such as ITER, operating just below the MHD limit for the dithering phase could be a promising regime for maximising core density, and fusion performance while minimising plasma-material interaction. The oscillatory signal during the dithering phase could be used as a precursor of undesirable plasma performance for control purposes.
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Nuclear fusion 61(6), 066009-(2021). doi:10.1088/1741-4326/abf056
- Accession number :
- edsair.doi.dedup.....c5cc21f63c454fdcef45efe5a8818b79
- Full Text :
- https://doi.org/10.1088/1741-4326/abf056