キバチ類(Siricidae)は、各種針葉樹・広葉樹に穿孔する食材性のハチの一群である。キバチ類の多くは、体内に貯蔵している担子菌額のAmylostereum菌を産卵時に材内に接種し、キバチ幼虫はこの菌を利用しながら辺材部を摂食して生育する。近年、スギ・ヒノキの木口面に認められる”星形”の変色が、キバチの接種する菌の作用であることが明らかとなり、害虫としてのキバチの存在も注目されつつある。本研究では、キバチ類の生態的特性の中で、 とくに彼らの資源利用様式と繁殖戦略を、天敵生物との関わりも含めて比較生態学的な観点から明らかにした。すなわち、アカマツ、スギ、 ヒノキ、モミに寄生する3種のキバチ、ニトベキバチ(Sirex nitobei)、ニホンキバチ(Urocerusjaponicus)、オナガキバチ(Xeris spectrum)について、6年間にわたってそれらの生活史や産卵機構などの生態特性、菌類との共生関係、 さらにはそれらをとり)まく生物間相互関係を中心に調査・実験を行い、以下のような新しい知見を得た。\n(1)キバチ類3種の生態特性1. 4樹種の寄主木から、ニトベキバチ、ニホンキバチ、オナガキバチの3属3種のキバチが羽化脱出した。ニトベキバチは1年1化であり、寄主木のアカマツ、モミから9月上旬~10月中旬に多く羽化脱出した。またニホンキバチも1年1化で、スギ、ヒノキから7月上旬~9月中旬の長期間にわたって多く発生した。一方オナガキバチは、スギ、モミから羽化脱出したが、8月中~下旬に脱出ピークをもつ1年1化のものと5月上旬~6月中旬をピークとする2年1化のものとが存在した。2.キバチ成虫の生重は、ニトベキバチでは20~490(♀)、ll~226(♂)mg、ニホンキバチでは42~299(♀)、17~84(♂)mg、オナガキバチでは12~181(♀)、3~62(♂)mgであり、3種ともに著しい個体差があった。また、キバチ成虫の平均蔵卵数(次世代生産能力)は、ニホンキバチで370個と最も多く、オナガキバチは150個、ニトベキバチは130個と最も少なかった。一方、卵長で評価した卵サイズは、ニトベキバチが1.6mm と最も大きく、オナガキバチは1.4mm、ニホンキバチは1.1mm と最も小さかった。さらに成虫の平均生存日数は、3種いずれも3.5~5.5日であった。(2) キバチ類3種の次世代生産能力および寄主木の条件が産卵行動に及ぼす影響1.キバチ類3種の体サイズと蔵卵数との間には、それぞれ明瞭な正比例関係が認められ、この関係からキバチの産卵数および産卵率の推定が可能となった。この方法を用いて、伐倒後1週間以内の主要寄主木丸太への3種の産卵特性を比較した。その結果、ニトベキバチのアカマツ丸太への推定産卵率は平均54%で、キバチ個体間の変動が大きかった(0~l00%)。ニホンキバチのスギ丸太への産卵率は50~100%の範囲にあったが、産卵率70%以上の個体が全体の60%以上を占め、平均産卵率は79%ときわめて高かった。一方、オナガキバチのスギ丸太への産卵率では、10%以下の個体の割合が全体の70%以上に達し、平均産卵率も3%にすぎなかった。2.ニトベキバチについて、主要寄主木の伐倒後経過日数と産卵率との関係をみたところ、伐倒後3日以内の「新鮮丸太」では産卵率は供試丸太ごとに大きく異なり、約半数の個体は産卵率50%以下であった(平均39%)。しかし、伐倒後4~24日の「中間丸太」では、すべての個体が50%以上の産卵率を示し、平均産卵率も88%に達した。一方、伐倒後25日以上経過した「古丸太」における産卵率は、大部分の個体で50%以下であった(平均26%)。また、アカマツの生立木、枯死木に産卵させたニトベキバチの平均産卵率はそれぞれ45、58%であり、中間丸太における産卵率よりも低かった。3.ニホンキバチは、伐倒後10日以内のスギ丸太には高い産卵率(平均80%)を示したが、伐倒後経過日数が増すにつれて産卵率は低下し、伐倒後50日以降の丸太ではすべての個体が産卵率50%以下であった。また、産卵時のスギ丸太の含水率とニホンキバチの産卵率との間には明瞭な関係は認められなかった。4.オナガキバチでは、伐倒後1年を経過した古丸太には、伐倒後1週間以内の丸太と同様の低い産卵率にとどまり(平均4%)、多くの個体は産卵行動すら示さなかった。これに対し、Amylostereum chailletiiまたはA.areolatum を接種した丸太に対しては、それぞれ平均30%程度の産卵率を示し、90%以上の高い産卵率を示す個体もみられた。さらに、丸太上の菌の接種部付近に集中して産卵する傾向も認められた。(3) 共生菌の材内繁殖状況および産卵時の寄主木条件が次世代の生育に及ぼす影響1.材からの菌の再分離試験の結果、ニトベキバチを新鮮アカマツ丸太(伐倒後17日目)に産卵させた場合、産卵から3ヶ月後には産卵時に接種した共生菌のA.areolatumが約30%の相対優占度で再分離された。しかし、古丸太(同56日目)に同様に産卵させた場合には、3ヶ月後A.aeolalum は全く分離されず、Trichodermaspp.など共生菌以外の菌のみが分離された。ニホンキバチの場合も同様に、新鮮スギ丸太(同4日目)に産卵させると、3ヶ月後には接種共生菌であるA.chailletiiが優占度約60%という高率で再分離されたが、古丸太(同76日目)への産卵ではA.chailletiiは全く分離されなかった。また、新鮮丸太への産卵の場合でも、産卵から10ヶ月後にはA chailletiiは約20%の優占度にとどまり、産卵後2年経過した丸太では、産卵孔、坑道周辺いずれからも全く分離されなかった。2.アカマツの新鮮丸太に産卵したニトベキバチの次世代の羽化脱出までの生存率は13~32% (平均22%)であったが、同様に産卵させた古丸太からは、次世代成虫は全く脱出しなかった。一方、林内において5、7、9、11月にスギ、ヒノキ生立木を伐倒し、伐倒時期に関連したニホンキバチの繁殖状況を調べたところ、それぞれ丸太10本あたりからの羽化脱出数は、0.8、15、5.3、0頭で、ニホンキバチの発生ピークにあたる7月の伐倒木からの脱出数が圧倒的に多いことが明らかとなった。(4) 天敵生物がキバチ個体群に及ぼす影響1.ニトベキバチに加害されたアカマツからは、オオホシオナガバチ(Megarhyssa praecellens)とヒラタタマバチ(Ibalia leucospoides)が羽化脱出した。キバチの幼虫ステージ後半で寄生するオオホシオナガバナのメス成虫の平均生重は、卵または1齢幼虫に寄生するヒラタタマバチに比べ、秋脱出個体群では1.8倍、春脱出個体群では4.1倍も大きかった。また、オオホシオナガバナの卵長はヒラタタマバチの10倍であったが、卵数は50分の1であった。一方、2種の寄生蜂によるニトベキバチの寄生率は60%以上と高い値を示していた。これらの結果、形態的特徴、脱出時期、寄生ステージの異なる2種が、ニトベキバチの寄生蜂として共存していることが確認された。また、本研究における両種による寄生率の高さから、野外におけるニトベキバチに対する寄生圧はかなり高いものと推測された。2.スギに寄生するニホンキバチ、オナガキバチの寄生蜂として、いずれもヒメバチ料のオオホシオナガバナ、シロフオナガバチ(Rhyssa persuasoria)およびPseudorhys・sa sternataが脱出した。3種の蔵卵数、産卵管長には有意差はなかったが、P. sternataは唯一労働寄生性であり、またシロフオナガバチとP.sternataはその生活環の中に休眠過程を持っていたことから、これら3種の寄生蜂は、互いに異なる寄生様式・寄生時期を持つことによって共存していることが示唆された。また、オオホシオナガバナによる寄生率は9%、シロフオナガバチでは10%、P.sternataでは7%であった。3.ニトベキバチメス成虫のうちの70%、ニホンキバチではその30%がDeladenus属線虫に感染していた。またオナガキバチでは、 1年目脱出個体群には線虫感染個体は認められなかったが、2年目脱出個体群では55%が線虫に感染していた。3種のキバチで線虫に感染していたメス成虫のうち、不妊化していたものの割合はきわめて低かったが、平均生重は3種とも感染個体の方が非感染個体よりも小さく、またニトベキバチでは、感染個体の方が生存日数が有意に短かった。このように、線虫感染はキバチに対して体サイズの小型化に伴う蔵卵数の減少あるいは生存日数の低下に伴う産卵期間の減少により、キバチの次世代生産能力を低下させている可能性が強く示唆された。4.あるアカマツ被害木では、脱出したニトベキバチのうちの約半数が、昆虫寄生菌の一種であるボーベリア菌(Beauveria bassiana)に感染していた。さらにそれらの次世代の中にも本菌に感染している個体が認められた。しかし、感染個体における生重、生存日数および産卵率の減少は認められなかった。以上の結果を総合して、次のことが示唆された。1.産卵時の寄主木の状態は材内での共生菌の繁殖に大きな影響を及ぼすことから、共生菌を持つキバチのメス成虫は菌の繁殖に好適な寄主木に選択的に産卵する。また、自らは共生菌を持たないオナガキバチでさえ、他のキバチの共生菌が繁殖している木に選択的に産卵していたことから、キバチ幼虫はこのような菌が繁殖可能な寄主木でのみ生育できることが強く示唆された。一方菌の側からみると、Amylostereum 菌は接種後2年目には完全に分離されなくなることから、この菌が一本の寄主木を利用できるのは他の木材腐朽菌類等に比べごく短期間であり、新たな繁殖場所の確保には特殊化した媒介者の存在が不可欠であることが示唆される。すなわち、他種の菌を一方的に利用するオナガキバチを除き、キバチとAmylostereum菌との間には、互いに他方の共生者の存在なしには生存し得ない「義務的共生関係」を成立させているものと考えられた。2.樹脂道を持つアカマツを寄主木とし、ある程度活性のある木も利用するニトベキバチは、樹脂に対して耐性を持つ卵殻の厚い卵を形成する必要があり、このため少数の大型卵を生産するものと推察される。これに対し、樹脂は産卵の制限要因とはならないものの、ニトベキバチの寄主木に比べてより散発的にしか供給されない新たな風倒木や被圧枯死木を繁殖源とするニホンキバチは、ニトベキバチに比べて小型の卵をより多く生産する。こうした蔵卵様式は、予測性がより低い資源に遭遇した時により多くの卵を集中的に産卵できるという点で適応的であると考えられる。一方オナガキバチは、他の2種とは異なり、自らは体内に共生菌を持たずに他種のキバチの共生菌を非選択的に利用して繁殖しており、このことが本種にみられる寄生樹種と地理的分布の拡大に寄与してきたものと考えられた。3.キバチ個体群に対して最も主要な死亡要因の一つとして働く天敵生物は、寄生蜂であることが明らかにされた。これに対し線虫は、キバチ成虫の小型化をもたらしたものの、直接的な死亡要因としての比重は低いものと推察された。また、アカマツにおけるニトベキバチが60~7()%の高率で2種の寄生蜂に寄生されていたのに対して、ニホンキバチ、オナガキバチに対する3種の寄生蜂の寄生率は全体でも30%以下とやや低かった。これは、切り捨て間伐を背景とする繁殖資源の急激な増加が生じたことによって、寄生蜂よりも高い増殖能カをもつニホンキバチやオナガキバチの密度レベルが短期間に上昇し、一種のエスケープが起こったためと考えられる。このように、キバチにとっての潜在的な繁殖資源の増加は、寄生蜂によるキバチの密度抑制効果にも影響を及ぼしている可能性が示唆された。4.本研究およびこれまでの知見を総合して、キバチ類、とくにニホンキバチの防除に関する提言を行った。, Woodwasps (Siricidae) are hymenopterans whose larvae feed primarily on the sapwood of various coniferous and broad-leaved trees. In many species of woodwasp, the females carry arthrospores of one of the specific basidiomycetous fungi, Amylostereum spp., as a symbiont in a pair of small intersegmental sacs in their bodies. Females drill several holes through the bark deep into the sapwood of new host trees and then deposit arthrospores of the fungus together with eggs in the holes. The mycelia propagated in the wood tissues or fungus-infected parts of the wood are likely to provide essential nutriments and/or digestive enzymes which decompose wood tissues for the larvae. Recently in Japan, woodwasps have been regarded as a forest pest, because the discoloration and deterioration of wood tissue induced by the symbiotic fungi have often degraded the commercial value of the wood. During a six-year period of study, I investigated ecological traits such as life history and oviposition system, the symbiotic relationship between woodwasps and fungi, and the interactions between organisms involved in the system, for three woodwasp species, Sirex nitobei, Urocerus japonicus and Xeris spectrum which infested Pinus densiflora, Cryptomeria japonica, Chamaecyparis obtusa and/or Abies firma. The results are summarized as follows. (I) Ecological traits of the three woodwasp species 1. Three genera and three species of woodwasp, S. nitobei, U. japonicus and X. spectrum, emerged from the four host tree species. The life cycle of S. nitobei was completed in one year. Most of S. nitobei emerged from P. densiflora or A. firma from early September to mid-October. The life cycle of U. japonicus was also completed in one year, and most emerged from C. japonica or C. obtusa from early July to mid-September. On the other hand, X. spectrum had two types of population, a population emerging from C. japonica or A. firma from mid-August to late August one year after oviposition, and another population emerging from these host-trees during early May to mid-June two years after oviposition. 2. The body weight ranged from 20-490 (♀) and 11 -226 mg f. wt (♂) in S. nitobei, 42-299 (♀) and 17-84 mg f. wt (♂) in U. japonicus and 12-181 (♀) and 3-62 mg f. wt (♂) in X. spectrum. The values varied greatly among individuals in all the woodwasp species. The mean number of eggs produced per female (potential fecundity) was largest in U. japonicus (370), followed by S. nitobei (150) and least in X. spectrum (130). On the other hand, the egg size evaluated by egg length was largest in S. nitobei (1.6 mm), followed by X. spectrum (1.4 mm) and least in U. japonicus (1.1 mm). The mean longevities of the three species ranged from 3.5-5.5 days. (2) Fecundities of the three woodwasp species and host- tree conditions affecting their oviposition behavior 1. The potential fecundities of the three woodwasp species were approximately proportional to the fresh body weights of female adults at the time of emergence, and this regression allowed estimates of the number of eggs laid and the proportion of oviposition. Using these relationships, the oviposition traits of the three species on their major host trees were compared using fresh logs within one week after tree-felling. The mean proportion of oviposition was estimated to be about 54% (range 0-100%) on P. densiflora logs by S. nitobei and 79% (50-100%) on C. japonica logs U. japonicus, in marked contrast to only 3% on C. japonica logs by X. spectrum. 2. According to the days elapsed after tree-felling, the oviposition proportions of S. nitobei on P. densiflora logs can be divided arbitrarily into three groups. The oviposition proportions on the logs within 0-3 days after tree-felling ("fresh logs") varied greatly from log to log, and about half of female adults showed proportions less than 50% (mean: 39%). However, all the females that oviposited on the logs 4-24 days after tree-felling ("intermediate logs") invariably showed proportions over 50% (mean: 88%). The oviposition proportion in females ovipositing on logs more than 25 days since felling ("old logs") was less than 50% (mean: 26%). The mean oviposition proportion was 45% on live trees and 58% on dead trees. 3 . Urocerus japonicus exhibited high oviposition proportions (mean: 80%) on C. japonica logs within 10 days of tree-felling. However, there was a negative relationship between oviposition proportion and days after tree-felling (0-125 days). The oviposition proportion was particularly low for the logs that elapsed more than 50 days after tree-felling at the time of oviposition. There was no significant relationship between the oviposition proportion of U. japonicus and water content of C. iaponica log at the time of oviposition. 4. Xeris spectrum laid few eggs on old logs (mean: 4%) or fresh logs, whereas on logs inoculated with Amylostereum chailletii or A. areolatum, the females oviposited no less than 30%, on average, of their potential fecundity. Moreover, the oviposition sites on these logs were concentrated near the Amylo-stereuminoculated positions. (3) Host-tree conditions affecting the propagation of symbiotic fungi in the wood and the reproductive success of the woodwasps 1 . Isolation of microorganisms was performed from the wood around the oviposition holes three months after oviposition on fresh and old logs. The symbiotic fungus of S. nitobei, A. areolatum, was isolated with a frequency of about 30% from a fresh P. densiflora log (17 days after tree-felling at the time of oviposition), whereas this fungus was not isolated from an old log (56 days), whereas Trichoderma spp. etc. were. The symbiotic fungus of U. japonicus, A. chailletii, was also isolated at about 60% from a fresh C. japonica log (4 days), whereas the fungus was not isolated from an old log (76 days) as with the case of S. nitobei. From the fresh log oviposited by U. japonicus, A. chailletii was isolated at only about 20% frequency 10 months after oviposition, and two years after oviposition the fungus was not isolated from the wood around the oviposition hole nor from the galleries. 2. The survival rate of S. nitobei from egg to adult emergence was estimated to be 13-32% (mean: 22%) on fresh P. densiflora logs, while no adults emerged from old logs. Moreover, the reproductive success of U. japonicus in relation to the period of tree-felling was examined using living trees of C. japonica and C. obtusa felled in the field. The number of emerged adults per 10 logs was 0.8 in May, 15 in July, 5.3 in September and 0 in November, with the maximum on the tree felled in July, when the density of U. japonicus in the field was highest. (4) Effects of natural enemies on woodwasp populations 1. Two parasitoid wasps, Ibalia leucospoides and Megarhyssa praecellens, emerged together with their host woodwasp, S. nitobei, from trees of P. densiflora. The mean female body mass of M. praecellens was about 1.8 times (fall population) or about 4.1 times (spring population) larger than that of I. leucospoides. The difference in body size was marked between sexes in both species. The spring population of M. praecellens was about 3.7 times (♂) or 2.3 times (♀) larger in mean body-weight than the fall population. The mean egg length of M. praecellens was about 10 times larger than that of I. leucospoides, whereas I. leucospoides produced about 50 times more eggs than M. praecellens. The percentage of parasitism on S. nitobei by both parasitoids was high, accounting for more than 60%. The results suggest that the two parasitoid species could utilize larvae of S. nitobei in the wood as their hosts at different developmental stages of the woodwasp in different ways: egg and/or lst-instar larvae parasitized by I. leucospoides and mature larvae by M. praecellens. 2. Three ichneumonid parasitoid wasps, M.praecellens, Rhyssa persuasoria and Pseudorhyssa sternata, emerged together with their host woodwasps, U. japonicus and X. spectrum, from C. japonica trees. There was no significant difference in fecundity and ovipositor length among the three parasitoids. The parasitism patterns of M. praecellens and R. persuasoria are ectoparasitism, whereas P. sternata has a different parasitism pattern, cleptoparasitism. Rhyssa persuasoria and P. sternata had a hibernation process in their life cycle. These results suggest that the three ichneumonid parasitoids differ in their niches by having different parasitism patterns and/or parasitism periods. The percentage parasitism of the two woodwasps in all the logs accounted for less than 30% by the three parasitoids: about 9% by M. praecellens, about 10% by R. persuasoria and about 7% by P. sternata. 3. The percentage of nematode infection in S. nitobei females accounted for about 70%, compared with about 30% in U. japonicus females. On the other hand, no X. spectrum females emerging in the first year were infected by the nematode, whereas in the second year about 55% of the females were infected. Nematode-infected woodwasps tend to have lower fecundities, related to their smaller body mass, than uninfected ones. However, there were few individuals among the infected woodwasps that suffered ovarian dysfunction and reduced fecundity independent of body size. Moreover, the longevity of nematodeinfected females of S. nitobei was significantly less than that of uninfected individuals. These results suggest that although nematode infection can lead to reduction of woodwasp fecundity due to reduced body size and/or adult longevity, it is unlikely to be a major mortality factor for the woodwasp. 4. On a P. densiflora tree infested by S. nitobei, about half the individuals were infected with an entomopathogenic fungus, Beauberia bassiana. Moreover, some individuals of the next generation were also infected. However, there were no significant differences in body weight, longevity or oviposition proportion between infected and uninfected individuals. These results suggest that: 1. Fungus-carrying woodwasp species oviposit selectively on logs which are presumed to be suitable for fungus propagation, because the conditions of the wood at the time of oviposition affect propagation of the fungus. Moreover, even X. spectrum with no fungal symbiont oviposited exclusively at locations where the fungi had been inoculated by other funguscarrying woodwasp species. Thus, no woodwasp larvae could develop in wood where no Amylostereum fungus had propagated. In addition, the symbiotic fungus was scarcely isolated from wood where it had been inoculated two years previously. The period during which the Amylostereum fungus can propagate actively in the host tree is likely to be shorter than that for other wood-decaying fungi, and thus Amylostereum needs a vector that carries it to other favorable habitats where it can propagate successfully. Thus, all the woodwasps, except for X. spectrum which utilizes the fungi associated with other woodwasp species, and Amylostereum fungi may have developed an obligatory mutualism. 2. Sirex nitobei attacks living trees of P. densiflora, whose resin canals have higher resistance to larval growth than dead trees, and thus females need to produce eggs with a thick shell. This may be closely related to the fact that S. nitobei produces fewer, but larger, eggs than the other two species. Urocerus japonicus depends greatly on unpredictable resources such as freshly felled or dead trees occurring naturally. Thus, U. japonicus females have to search for occasional resources in the field for their reproduction, and therefore a reproductive strategy maximizing their fecundity on suitable host trees would be adaptive for this species. This may partly explain why adult females of this species produce smaller, but more eggs than S. nitobei. On the other hand, X. spectrum has a life history in which it utilizes the fungal symbionts of other woodwasp species unselectively, since it does not possess any symbiotic fungi itself; this trait may have allowed it to have a wider host range and a wider worldwide distribution than other siricid species with species-dspecific fungal symbionts. 3. Parasitoid wasps were shown to be the major mortality factor for woodwasps in the present system. The percentage of parasitism by the three parasitoids on U. japonicus and X. spectrum in logs totalled less than 30%, a value considerably less than the 60-70% for S. nitobei. U. japonicus and X. spectrum emerged mainly from felled trees left on the forest floor by thinning operations, whereas S. nitobei reproduced on living, but suppressed, stressed or damaged trees which occur more sporadically in the field. In recent years, artificial thinning operations have left many logs to decompose on the forest floor, thus providing potential breeding sites for U. japonicus and X. spectrum; as a consequence, the local and overall population density levels of these woodwasps have increased sharply in a short period. Woodwasps with much larger fecundities can respond more rapidly to unexpected increases in resources than solitary parasitoids with lower fecundity. This may be closely related to the low rate of parasitism by wasps on U. japonicus and X. spectrum in the present study. 4. From the results of this study and other related information, some practical suggestions are provided for the control of woodwasps, especially U. japonicus., 農林水産研究情報センターで作成したPDFファイルを使用している。