1. Model driven simulation of elastic OCCI cloud resources
- Author
-
Faiez Zalila, Walid Gaaloul, Philippe Merle, Slim Kallel, Mehdi Ahmed-Nacer, Université des Sciences et de la Technologie Houari Boumediene = University of Sciences and Technology Houari Boumediene [Alger] (USTHB), Unité de Recherche en développement et contrôle d'applications distribuées (REDCAD), École Nationale d'Ingénieurs de Sfax | National School of Engineers of Sfax (ENIS), Self-adaptation for distributed services and large software systems (SPIRALS), Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut Polytechnique de Paris (IP Paris), Département Informatique (TSP - INF), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Algorithmes, Composants, Modèles Et Services pour l'informatique répartie (ACMES-SAMOVAR), Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux (SAMOVAR), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP)-Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), This work is partially supported by OCCIware, a research project funded by French FSN (Fonds national pour la Société Numérique) program., University of Sciences and Technology Houari Boumediene [Alger] (USTHB), Université de Lille-Centrale Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centrale Lille-Centre National de la Recherche Scientifique (CNRS), and Département Informatique (INF)
- Subjects
OCCIware ,CloudSim ,General Computer Science ,Computer science ,Interface (Java) ,Distributed computing ,Cloud computing ,Context (language use) ,0102 computer and information sciences ,02 engineering and technology ,[INFO.INFO-SE]Computer Science [cs]/Software Engineering [cs.SE] ,01 natural sciences ,0202 electrical engineering, electronic engineering, information engineering ,[INFO]Computer Science [cs] ,Abstraction (linguistics) ,Amazon web services ,business.industry ,020206 networking & telecommunications ,Usability ,Elasticity ,Metamodeling ,010201 computation theory & mathematics ,Proof of concept ,OCCI ,[INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,business ,Pricing ,Simulation - Abstract
Deploying a cloud configuration in a real cloud platform is mostly cost- and time- consuming, as large number of cloud resources have to be rented for the time needed to run the configuration. Thereafter, cloud simulation tools are used as a cheap alternative to test cloud configuration. However, most of the existing cloud simulation tools require extensive technical skills and do not support simulation of any kind of cloud resources. In this context, using a model-driven approach can be helpful as it allows developers to efficiently describe their needs at a high level of abstraction. To do, we propose, in this article, a model-driven engineering approach based on the Open Cloud Computing Interface(OCCI) standard metamodel and CloudSim toolkit. We firstly extend OCCI metamodel for the supporting simulation of any kind of cloud resources. Afterward, to illustrate the extensibility of our approach, we enrich the proposed metamodel by new simulation capabilities. As proof of concept, we study the elasticity and pricing strategies of Amazon Web Services (AWS). This article benefits from OCCIware Studio to design an OCCI simulation extension and to provide a simulation designer for designing cloud configurations to be simulated. We detail the approach process from defining an OCCI simulation extension until the generation and the simulation of the OCCI cloud configurations. Finally, we validate the proposed approach by providing a realistic experimentation to study its usability, the resources coverage rate and the cost. The results are compared with the ones computed from AWS.
- Published
- 2022
- Full Text
- View/download PDF